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TeV - PeV: 
• poor statistics: about 10 high-energy muon 

neutrino events per year, more at low energies
• poor angular resolution: ~0.4 deg 
EeV: undetected, predicted to exist

Sources


unknown source type, timescale, flux distribution..
possible number density 10�8 � 10�4 Mpc�3

Objective


find the sources!
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Don’t know the actual source locations —> Scan the sky for maximum



TS = max(TS(~xs))
Braun+ 0801.1604
Braun+ 0912.1572
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But… Squares = Boundaries + Trials

Patch size needs to be much smaller than angular 
resolution to avoid missing the source
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Two-point Autocorrelation Method

Test Statistic


TSAC = max(p(⌦))
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Two-point autocorrelation  
Limitations



‣Trials due to selection of angular bins

‣No PSF information,


but detectors could 
have non-uniform 
angular resolution & 
sensitivity  

One angular scale showing


 the strongest anisotropy   6= Source locations 



(The autocorrelation method is not being used to find sources)
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Comparison of Methods in 


Rate of False Negative Error (FNE)

KF & Miller, ApJ, 826 (2016) 102



13

Number of Events Needed for Detection

KF & Miller, ApJ, 826 (2016) 102
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Applying to IceCube Data

In collaboration with Erik Blaufuss, the Maryland IceCube Group & the Drexel IceCube Group

PDF of angular separations of pairs from diffuse background 
and point sources are constructed using IceCube Monte Carlo 
simulation data and 2011 PS data. 
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•Setup and test the method with one-year data


• Implement the energy-dependence of the pair method
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Next Steps

•Setup and test the method with one-year data


• Implement the energy-dependence of the pair method


•Apply to seven-year PS data


•Transient search by Andrea Turcati with HESE trigger  

Progressing (with small glitches). Stay tuned!



EeV Neutrino Source Detection

KF, Kotera, Miller, Murase, Oikonomou, JCAP, 1609.08027
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Difference from the Autocorrelation Method
PSF information embedded in Apoint & Adiff




