

Compact imaging air Cherenkov telescopes as an additional component for large astroparticle detectors like IceCube and HAWC

by Jan Auffenberg

Bundesministerium für Bildung und Forschung

Jan Auffenberg

IceAct/FAMOUS Mechanical Concept 🌒

LCECUBE

IceCube-Extension

IceCube-Gen2 plans:

- The low Energy extension "Phase1" in the core of Deep Core to increase energy and directional resolution at low energies
- Extensions to increase sensitivity at high neutrino energies

Veto CRs to measure astrophysical

neutrinos

- Requirements for a surface veto:
- extremely good detection efficiency for CR -high duty cycle
 - -low energy threshold

- **One solution:** many surface stations to detect particles on the surface.
- requires a high instrumentation density to reach sufficient detection efficiency at high energies
- **This idea:** take atmosphere as active volume and measure the air-Cherenkov light of the air shower.
- Lower duty cycle but low energy threshold. (see ICRC2015 PoS(ICRC2015)1156, PoS(ICRC2015)568, PoS(ICRC2015)649, PoS(ICRC2015)605, and PoS(ICRC2015)1047)

Of course the systems can be combined!

Cloud monitoring is about to improve

IACT at South Pole Duty Cycle

Overall <u>annual</u> duty cycle at the South Pole is indeed in the order of ~25% or better! TU Dortmund will keep working on this building on experience from FACT

A first glance in coincident data 🏶

A first glance in coincident data 🏶

Another Event

Another Event

Motivation for IceAct Veto

- Uptime is pessimistic
- Energy threshold 20 TeV not unrealistic
- Could act as a low energy in-fill for the surface Veto
- Needs more careful investigation!

Hypothetical surface veto detector @ 60° declination (Galactic Center) @ South Pole S Differential discovery potential $[TeV cm^2]$ 20 TeV / 20% uptime 250 TeV / 100% uptime together IACT based veto Particle detector based v 10^{3} $10^4 \ 10^5 \ 10^6 \ 10^7 \ 10^8 \ 10^9 \ 10^{10}$ $E_{\nu,\,\mathrm{center}}$ [GeV]

First simulation studies

- threshold @ 50 TeV CR energy (about 20 TeV neutrino primary energy) for telescopes @ 150m distance
- to cover IceTop (20° inclination) about 250 telescopes might be needed

CR Physics with IceAct and IceTop

Might enable us to very precisely measure the particle ID!

Projection relative to the average Photon Height 🌒 🖙 🖓

Photon projection on Shower Axis

Proton/Iron 2 PeV primary energy

Particle separation Power

Purity and selection parameter are marginally changing with energy The particle identification has low energy dependence!

Needs further investigation...

Particle separation Power

Purity and selection parameter are marginally changing with energy The particle identification has low energy dependence!

Needs further investigation...

Applications for HAWC

Array and air-Cherenkov hybrid detection:

Array (HAWC):

- Ionizing particles:
 - Inclination angle
 - Shower core
 - (y/Hadr. sep.)

IceAct/FAMOUS:

- Cherenkov light:
 - Primary Energy
 - (y/Hadr. sep.)

Applications for HAWC

Gamma-Ray Observatory

Jan Auffenberg

Possible Applications for HAWC

CECUBE

IceAct/FAMOUS summary

IceAct/Famous is a candidate component for IceCube extensions.

- As a surface veto component
- For CR composition measurements
- Prototype continuously running at South Pole.
 - First coincident data with IceCube was shown

This year a fully equipped 61 pixel telescope will be deployed at the South Pole!

- can be used for IceTop calibration studies

IceAct/FAMOUS has the potential to improve the energy resolution of HAWC.

- Will be tested soon!

Forschungsgemeinschaft

Deutsche

- Other applications like background separation might also be possible.

Jan Auffenberg

Thank you!

Let us know if you are interested

Let us know if you want to contribute to

- Hardware R&D
 - mechanics
 - optics
 - electronics
- software development
 - slow control
 - daq
 - monitoring
- Simulation
 - corsika for veto
 - optical components
 - array configuration for CR study
- Data analysis
 - IceAct as veto
 - IceAct for composition studies
 - IceAct energy reconstruction
 - IceAct uptime study
 - Skcam data analysis
 - Lidar data analysis

IceAct 16/17 (hardware)

- Pixel wise calibration of 7 pixel camera
- removing the UG11 filter
- New DAQ
- adding a flasher LED
- adding another heating system

Martin Rongen

Jan Auffenberg

IceAct 17/18 (hardware)

31

Jan Auffenberg

Summary

- IceAct is a candidate technology for surface veto arrays
- IceAct might be used for composition studies in the knee region already with about 4-6 telescopes.
- The annual duty cycle seems to be ~20-25% to Veto CR with a threshold of ~20 TeV neutrino energy. A new skycam will measure this value to higher accuracy.
- So far we did not evaluate the potential for gamma-ray detection
- A first IceAct prototype was successfully taking data throughout the Polar winter.
- We are interested in more people to join the IceAct effort!

Bundesministerium für Bilduna

und Forschund

• Backup

- The South Pole skycam data analyses summary:
 - Observation between 16th-March-2015 and 27th-August-2015 (133 days)
 - on average 40 stars (mag >2.7) where continuously monitored to estimate the cloudiness (limited by the quality of the camera)
 - ~60% of the sky (57.4%) was clear. This corresponds to an annual duty cycle of 20-25% (This will increase with a better sky cam)
 - Very good weather is in 43% of the dark period (less than 30% clouds)
 - And acceptable weather (less than 60% clouds) is found in 73% of the time.

IceAct 17/18 (hardware)

Statistics @ 1PeV

125*125*pi m^2 and 0.03 sr * 0.3 duty cycle * 1 CR/m2/year/sr (at PeV) * 3 (6 Telescopes in one direction each) = 1350 events. Without stereo requirement up to ~3800.

Precise CR Composition measurements in the knee region with IceTop and IceAct

- Energy reconstruction comes mainly from IceTop
- Directional reconstruction comes from IceTop
- high of x-Max comes from IceAct telescope array

ICECUBE

We need more high energy tracks e.g. from the southern sky!

Open the southern sky for E < 100 TeV Neutrino induced muon tracks by vetoing signals with coincident air showers

39

ICECUBE

Cleaned Waveform on board 0 at channel 2 of event 6168

50

Jan Auffenberg

Time calibration IceAct/IceTop 🌒

 The pattern of the two fixed rate DRS4 boards has to be found in the random coincidence data with IceCube

For more information see talk by Maurice Günder

Time calibration IceAct/IceTop

Time calibration IceAct/IceTop 🌒

Weather conditions for the ACT @!CECUBE

Weather conditions for the ACT (CECUBE

It is going to be interesting!

Prototype at the South Pole

Small ACT for harsh environments

Learning from IceCube, FACT and CTA:

- Very efficient CR detection (veto) to open the southern sky for high energy neutrino detection with IceCube.
- Third detector component for IceCube and IceTop to precisely measure the composition of CR above 2 PeV.
- Possible second component for HAWC improving the Energy reconstruction (1 will tested in Mexico in May).
- Applications for CTA are under investigation.

First time that SiPMs are taking stable data at the South Pole! Trailblazer in Germany: Aachen, Bochum, Dortmund, Essen

At South Pole since 2015 One more in 2017!

IACT at South Pole Duty Cycle

Cloud monitoring is about to improve

sensor: Kodak KAI-340 CCD (640 x 480 pixels) Lens: Fujinon's FE185C046HA-1, 1.4 mm focal length, F/1.4

https://www.sbig.com/products/cameras/ specialty/the-allsky-340-camera/

Installed this Season!