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Evidence in favor

• LSND ν̄µ → ν̄e
• MiniBooNE ν̄µ → ν̄e and νµ → νe
• T2K νe → νe
• Gallium νe → νe
• Reactors νe → νe
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Disappearance and appearance

νµ → νe requires that the sterile neutrino mixes with
both νe and νµ

⇒ there must be effects in both νe → νe and νµ → νµ

Up to factors of 2, the energy averaged probabilities
obey

Pµe . (1− Pµµ)(1− Pee)
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Gallium anomaly

25% deficit of νe from radioactive sources at short
distances

• effect depends on nuclear matrix element
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Nuclear matrix elements – I
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Nuclear matrix elements – II
Correction from excited states Haxton 1998

0.667
GT (5/2−)

GT (gs)
+ 0.218

GT (3/2−)

GT (gs)

GT (5/2−) and GT (3/2−) are measured by exchange
reactions

GT (5/2−) GT (3/2−)
Krofcheck et al. (2011) 71Ga(p;n)71Ge < 0.005 0.011± 0.002

Frekers et al. (1985) 71Ga(3He;3H)71Ge 0.0034± 0.0026 0.0176± 0.0014

Combined: R̄ = 0.84± 0.05 (that’s nearly 3 σ)
Giunti et al., 2015
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The reactor anomaly
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Mueller et al., 2011, 2012 – where are all the
neutrinos gone?
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Contributors to the anomaly

6% deficit of ν̄e from nuclear reactors at short
distances

• 3% increase in reactor neutrino fluxes

• decrease in neutron lifetime (see submitted
position paper)

• inclusion of long-lived isotopes (non-equilibrium
correction)

The effects is therefore only partially due to the fluxes,
but the error budget is clearly dominated by the fluxes.
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Neutrinos from fission

N=50 N=82

Z=50

235U

239Pu

stable

fission yield

8E-5 0.004 0.008
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β-branches
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β-spectrum from fission

235U foil inside the High
Flux Reactor at ILL

Electron spectroscopy
with a magnetic spec-
trometer

Same method used for
239Pu and 241Pu

For 238U recent measure-
ment by Haag et al., 2013

Schreckenbach, et al. 1985.
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Virtual branches
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1 – fit an allowed β-spectrum with free normalization η and

endpoint energy E0 the last s data points

2 – delete the last s data points

3 – subtract the fitted spectrum from the data

4 – goto 1

Invert each virtual branch using energy conservation into a

neutrino spectrum and add them all. e.g. Vogel, 2007
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Reactor antineutrino fluxes

ILL inversion
simple Β-shape

our result
1101.2663
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Shift with respect to ILL results, due to

a) different effective nuclear charge distribution
b) branch-by-branch application of shape corrections
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Forbidden decays

ΡpHrL

ΡnHrL

ΨHrL

EΒ=10MeV

A=140

l=0

l=1

l=2
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r @fmD

e,ν̄ final state can form
a singlet or triplet spin
state J=0 or J=1

Allowed:
s-wave emission (l = 0)

Forbidden:
p-wave emission (l = 1)
or l > 1

Significant dependence on nuclear structure in
forbidden decays→ large uncertainties!
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Same for all
Based on JEFF fission yields and using ENSDF
spin-parity assignments
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Look at past data
a Experiment fa

235
fa

238
fa

239
fa

241
R

exp
a,SH

σexp
a

[%] σcor
a

[%] La [m]

1 Bugey-4 0.538 0.078 0.328 0.056 0.932 1.4 1.4 15

2 Rovno91 0.606 0.074 0.277 0.043 0.930 2.8 1.8 18

3 Rovno88-1I 0.607 0.074 0.277 0.042 0.907 6.4 3.8 18

4 Rovno88-2I 0.603 0.076 0.276 0.045 0.938 6.4 3.8 18

5 Rovno88-1S 0.606 0.074 0.277 0.043 0.962 7.3 3.8 18

6 Rovno88-2S 0.557 0.076 0.313 0.054 0.949 7.3 3.8 25

7 Rovno88-3S 0.606 0.074 0.274 0.046 0.928 6.8 3.8 18

8 Bugey-3-15 0.538 0.078 0.328 0.056 0.936 4.2 4.1 15

9 Bugey-3-40 0.538 0.078 0.328 0.056 0.942 4.3 4.1 40

10 Bugey-3-95 0.538 0.078 0.328 0.056 0.867 15.2 4.1 95

11 Gosgen-38 0.619 0.067 0.272 0.042 0.955 5.4 3.8 37.9

12 Gosgen-46 0.584 0.068 0.298 0.050 0.981 5.4 3.8 45.9

13 Gosgen-65 0.543 0.070 0.329 0.058 0.915 6.7 3.8 64.7

14 ILL 1 0 0 0 0.792 9.1 8.0 8.76

15 Krasnoyarsk87-33 1 0 0 0 0.925 5.0 4.8 32.8

16 Krasnoyarsk87-92 1 0 0 0 0.942 20.4 4.8 92.3

17 Krasnoyarsk94-57 1 0 0 0 0.936 4.2 2.5 57

18 Krasnoyarsk99-34 1 0 0 0 0.946 3.0 2.5 34

19 SRP-18 1 0 0 0 0.941 2.8 0.0 18.2

20 SRP-24 1 0 0 0 1.006 2.9 0.0 23.8

21 Nucifer 0.926 0.061 0.008 0.005 1.014 10.7 0.0 7.2

22 Chooz 0.496 0.087 0.351 0.066 0.996 3.2 0.0 ≈ 1000

23 Palo Verde 0.600 0.070 0.270 0.060 0.997 5.4 0.0 ≈ 800

24 Daya Bay 0.561 0.076 0.307 0.056 0.946 2.0 0.0 ≈ 550

25 RENO 0.569 0.073 0.301 0.056 0.946 2.1 0.0 ≈ 410

26 Double Chooz 0.511 0.087 0.340 0.062 0.935 1.4 0.0 ≈ 415

Giunti, 2016
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What does this tell us?

Giunti, 2016

Is U235 odd?
Are the error bars for U235 just smaller?
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Latest result of Daya Bay

Daya Bay, 2017, see also talks by B. Littlejohn and K. Heeger
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More neutrino measurements

In Daya Bay, RENO and Double Chooz, the distance
is such that all sterile oscillations are averaged away –
no confusion between nuclear physics and new
physics

The statistics in the Daya Bay near detectors is around
1 million events

In combination, this should provide a good test of our
ability to compute reactor fluxes
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The 5 MeV bump

•

•

•

Seen by all three reactor experiments

Tracks reactor power

Seems independent of burn-up
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Y. Oh, ICHEP 2016

24m from a large
core (power reactor),
confirms bump, but
unclear what it says
about steriles. . .

appears to disfavor

∆m2 < 1 eV2
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NEOS vs Daya Bay

� �

�

� �

�
�
�
� � �

�

�

� �
�
�

�

�

�

�
�

�

�

�

�
���

�

�
�
�

�

�

�
�

�

��
�

�

�
�

��
��

��
�

�

�

�

�

�
�

���

�

�
�

��

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

� �

�

� �

�
�
�
� � �

�

�

� �
�
�

�

�

�

�
�

�

�

�

�
���

�

�
�
�

�

�

�
�

�

��
�

�

�
�

��
��

��
�

�

�

�

�

�
�

���

�

�
�

��

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

1 2 3 4 5 6 7
0.95

1.00

1.05

1.10

1.15

Eprompt [MeV]

R

1 2 3 4 5 6 7

0.95

1.00

1.05

Eprompt [MeV]
R

N
E

O
S
/R

D
a
y
a

B
a
y

Huber, 2017

There is more U235 in NEOS, since core is fresh ⇒

3− 4 σ evidence against Pu as sole source of bump,
but equal bump size is still allowed at better than 2 σ.
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NEOS and sterile neutrinos

adapted from NEOS, 2016

NEOS reports a limit,
but their best fit oc-
curs at sin2 2θ = 0.05
and ∆m2 = 1.73 eV2

with a χ2 value
6.5 below
the no-oscillation hy-
pothesis.
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Global picture

adapted from Giunti, Neutrino 2016, see also talk by J. Conrad

No tension in νe → νe or νµ → νµ.
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Score card

data theory no direct tension

LSND 0 + -

MiniBooNE + - - - -

T2K + - - ++

Gallium + ++ ++

Reactors ++ 0 +
++ strong, + adequate, 0 undecided, - likely issue, - - clearly a problem

A eV-scale sterile neutrino is a simple explanation for
all the observations.

The gallium result is very hard to explain away.
Reactors are coming under pressure from their own
precision.
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Questions?
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