Performance of HAWC in First Data

Sample Event

Trigger Rate ~25 kHz / 30 PMT Threshold

Events Categorized by Fraction of PMTs Hit

Air Shower Curvature & Sampling

Direction reconstruction is a simple plane fit, after this correction.

Photon/Hadron Discrimination: Compactness

Number of PMTs in the Event

$$C = \frac{N_{hit}}{CxPE_{40}}$$

Charge in hardest-hit PMT outside 40 meters.

Photon/Hadron Discrimination: PINCness

$$\zeta_i = \log_{10}(q_i)$$

$$\mathcal{P} = \frac{1}{N} \sum_{i=0}^{N} \frac{(\zeta_i - \langle \zeta_i \rangle)^2}{\sigma_{\zeta_i}^2}$$

χ 2-like quantity to quantify "smoothness"

Angular Resolution & Photon/Hadron Rejection

Angular Resolution & Photon/Hadron Rejection

Take-away

- Angular Resolution (68% containment) < 0.2°
- 2x10⁻³ background efficiency with good gamma-ray efficiency.

Differential Sensitivity

Summary

- The Crab Nebula is a strong source in HAWC (100σ) and provides an excellent test beam.
- Reconstruction and photon/hadron separation sketched.
- Angular resolution demonstrated down to 0.2°.
- Gamma/hadron separation keeps >30% of photons while only keeping 2x10⁻³ hadrons.
- Unprecedented sensitivity above 10 TeV.

Energy reconstruction above 10 TeV coming soon.