
Recent results
from HAWC

PRELIMINARY[
P
h
o
t
o
:
 
A
d
i
v
 
G
o
n
z
á
l
e
z
-
M
u
ñ
o
z
]

Colas Rivière (UMD) for the HAWC Collaboration  
Workshop on a wide field-of-view Southern Hemisphere TeV gamma-ray observatory  

Puebla, Puebla, Mexico — 2016-11-10



C. Rivière 2

Wide field of view

http://hawclava.umd.edu/riviere/gammasky/
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Wide field of view

http://hawclava.umd.edu/riviere/gammasky/
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Targets

• Covers a large fraction of the sky

• Daily observations

• Targets: everything!

• Point, extended

• Steady, variable, transient

• search in archival data

• send alerts

• Just getting started, data flowing and analysis improving!

http://hawclava.umd.edu/riviere/gammasky/
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Steady source survey

• Wide FoV: Look everywhere
• High energy reach: where IACTs are statistics limited
• Extended: can see sources too big for IACTs’ FoV

PRELIMINARY
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Energy range

• Left: Differential sensitivity, per quater decade.
• Right: Energy of the events providing most of the 

sensitivity, for 3 different spectrum hypothesis.

PRELIMINARY
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Skymap — HAWC, 17 months, point source (index -2.7) model
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Fermi Bubbles

• See next talk by Hugo Ayala

PAPER  IN 
PREPARATION
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Geminga / PSR J0659+1414

• Geminga detected by Milagro in 2009, confirmed by 
HAWC.
• 3e5 yr, 250 pc, 3e34 erg/s

• 2HWC J0658+152 discovered by HAWC.
• PSR J0659+1414: 1e5 yr, 288 pc, 3.8e34 erg/s

• Both seen as extended hard sources.

PAPER  IN 
PREPARATION
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Geminga / PSR J0659+1414

• Measure spectrum and morphology
• Are we seeing emission from electrons diffused into 

the ISM?
• Measure diffusion coefficient
• Can we confirm or rule out nearby pulsar as source of 

local e±?

PAPER  IN 
PREPARATION
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Variability PAPER  IN 
PREPARATION
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Inner Galactic Plane PAPER  IN 
PREPARATION
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Inner Galactic Plane, HAWC, H.E.S.S., Fermi 2FHL
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Inner Galactic Plane, HAWC, H.E.S.S., Fermi 2FHL
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Cygnus region

New TeV source 
2HWCJ2006+341:  
• >6σ pre-trials 
• 0.6° from unidentified 

source 3FGL J2004.4+3338
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Cygnus region

2HWC J2019+367 is 
coincident with MGRO 
J2019+37 and VER 
J2019+368
• extended emission 

including PSR J2021+3651 
and HII region Sh 2-104

The Astrophysical Journal, 788:78 (10pp), 2014 June 10 Aliu et al.
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VERITAS

VER J2019+368

CTB 87 (VER J2016+371)

Figure 3. Differential energy spectrum of VER J2016+371/CTB 87 and VER
J2019+368 as measured by VERITAS. The event excess in each bin have a
statistical significance of at least 2σ .
(A color version of this figure is available in the online journal.)

reduced χ2 values, mainly due to limited statistics. Either a
larger data set or more sensitive reconstruction techniques, or
both, are necessary to determine the morphology better.

The energy spectrum for VER J2019+368 is estimated from
a circular region of 0.◦5 radius centered on the best fit position.
The resulting spectrum, shown in Figure 3, extends from 1 to
30 TeV and is well fit by a PL model (χ2/dof = 5.79/6)
with a hard photon index of Γ = 1.75 ± 0.08stat ± 0.2sys
and a differential flux at 5 TeV of (8.1 ± 0.7stat ± 1.6sys) ×
10−14 TeV−1 cm−2 s−1. Assuming these parameters from the
fit, the 1–10 TeV integrated energy flux is estimated to be
(6.7 ± 0.5stat ± 1.2sys)×10−12 erg cm−2 s−1. We also attempted
to fit alternative, spectral models (such as a curved PL and cut-off
PL model) but they did not provide better fits. The study of the
energy dependent morphology of the emission in two separate
energy bands, below 1 TeV, and above 1 TeV, supports the lack
of any statistically significant spectral points below 1 TeV. The
excess maps for each energy band show evidence for different
centroid positions, see Figure 4. Above 1 TeV, a strong emission
(at the level of 9σ ) with a best fit location statistically compatible
with that of VER J2019+368 is observed. Below 1 TeV, there
are indications (at the level of 3σ ) of emission offset by about
0.5 degrees in the direction of the unidentified gamma-ray source
2FGL J2018.0+3626.

4. MULTIWAVELENGTH PROPERTIES,
INTERPRETATION, AND DISCUSSION

Both VHE-emitting regions coincide with non-thermal emis-
sion detected in radio, X-rays, and HE gamma-rays. In the
following sections, we examine in detail the locations, mor-
phologies, and spectral properties of these low energy counter-
parts in order to be able to establish the connection with the
VHE emission and its origin.

4.1. VER J2016+371, the SNR CTB 87, and their Surroundings

In Figure 5 we present a false color image of the radio and
X-ray emission in the region around VER J2016+371 obtained
with the Giant Metrewave Radio Telescope (GMRT; Paredes
et al. 2009) at 610 MHz and Chandra between 2 and 10 keV,
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Figure 4. VHE gamma-ray excess maps of the MGRO J2019+37 region as
observed with VERITAS in two different energy bands. The high energy band
is above 1 TeV (red) while the low energy band is between 600 GeV and 1 TeV
(green). The number of excess events in the maps has been obtained using a
search radius of 0.◦23, which corresponds to the extended source search analysis
described in the text. The change between the red and black in the color scale
takes place at the 4σ level, while between green and black is at the 2σ level.
(A color version of this figure is available in the online journal.)

respectively. The VHE contours of VER J2016+371 are co-
located with the bright and extended low-energy emission from
the SNR CTB 87. At radio wavelengths, the strong polarization,
flat spectral index, center-filled morphology, and lack of a
continuum shell have been used to classify CTB 87 as a PWN
(Weiler & Shaver 1978; Wallace et al. 1997). The high angular
resolution of the GMRT image (∼30′′) shows a faint circular
structure in the southwestern portion of the nebula. Further
studies at multiple wavelengths will be needed to determine
if this structure is related to CTB 87 or perhaps a different
source. The smoothed archival X-ray image reveals a centrally-
peaked morphology which is offset toward the southeast of
the radio peak and has a slightly smaller extent than the
radio emission. The X-ray emission was recently studied in
more detail by Matheson et al. (2013). The superb angular
resolution of Chandra also allowed these authors to localize
the pulsar candidate, CXOU J201609.2+371110, located within
the compact PWN (to the southeast of the remnant center).

HE gamma-ray emission is also detected in the vicinity of
VER J2016+371 with the Large Area Telescope on board the
Fermi spacecraft (Fermi-LAT; Abdo et al. 2009b). The 95%
error ellipse of the unidentified HE gamma-ray source 2FGL
J2015.6+3709 does not exclude a common origin between the
two sources. However, based on the variability index of the
Fermi-LAT source and its correlation with radio, Kara et al.
(2012) associate the HE gamma-ray emission with the nearby
blazar B2013+370, with unknown redshift, rather than with the
CTB 87. On the other hand, no VHE gamma-ray emission from
this extragalactic object is seen in the current data. Its location
lies 6.′7 away from the centroid of VER J2016+371, this being
much larger than the ∼1.′5 uncertainty of the VHE measurement.

4.1.1. A PWN scenario

The morphology of the extended X-ray PWN (Matheson
et al. 2013) suggests that it is affected by ram pressure due

5

VER J2019+368 (Aliu et al ApJ 2014)

0.6-1TeV
>1TeV
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Cygnus region

MGRO J2031+41 is resolved into two distinct 
TeV sources:

• 2HWC J2020+403 — VER J2019+407, UID 
encompassing SNR G78.2+2.1 and PSR 
J2021+4026 

• 2HWC J2031+415 — TeV J2032+4130, a 
PWN

• Hints of extended emission at Fermi 
cocoon?

The Astrophysical Journal, 770:93 (7pp), 2013 June 20 Aliu et al.
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Figure 1. Background-subtracted gamma-ray counts map of SNR G78.2+2.1
showing the VERITAS detection of VER J2019+407 and its fitted extent (black
dashed circle). The supernova remnant is delineated by CGPS 1420 MHz
continuum radio contours at brightness temperatures of 23.6 K, 33.0 K, 39.6 K,
50 K, and 100 K (white; Taylor et al. 2003); the star shows the location of the
central gamma-ray pulsar PSR J2021+4026. The inverted triangle and dot-
dashed circle (yellow) show the fitted centroid and extent of the emission
detected by Fermi above 10 GeV. The open and filled triangles (black)
show the positions of Fermi catalog sources 1FGL J2020.0+4049 and 2FGL
J2019.1+4040 which have been subsumed into the extended GeV emission
from the entire remnant. The 0.16, 0.24, and 0.32 photons bin−1 contours of
the Fermi detection of the Cygnus cocoon are shown in cyan. The white circle
(bottom right corner) indicates the 68% containment size of the VERITAS
gamma-ray PSF for this analysis.

applied, requiring that events have three images passing the
following criteria: more than four pixels per image, an image
centroid no more than 1.◦43 from the camera center, and a total
integrated charge per image of at least 70 photoelectrons.

Calibrated images are described in terms of a second-moment
parameterization (Hillas 1985). Cosmic-ray background is re-
jected using selection criteria applied to two composite param-
eters based on these moments: mean-scaled length (MSL) and
mean-scaled width (MSW; Aharonian et al. 1997). We impose
the requirements 0.05 < MSL < 1.25 and 0.05 < MSW < 1.10;
in addition, we require the angle between the reconstructed
gamma-ray arrival direction and the source position to be less
than 0.◦23. The chosen background-rejection criteria are opti-
mized for moderate-strength (∼5% of the Crab nebula flux)
extended sources. Together with the image quality require-
ments they impose an energy threshold for this measurement
of 320 GeV.

To minimize the number of independent search elements, our
search is restricted to a pre-defined circular region with radius
0.◦25 centered on the target position. In the imaging analysis
and source morphology studies the ring background model
(Aharonian et al. 2005) is used to estimate the residual cosmic
ray background; the reflected-region model (Aharonian et al.
2001) is used when extracting the spectrum. We also excluded
from the background estimation circular regions with radius 0.◦3
around four bright stars in the FOV (γ Cygni, P Cygni, 40 Cygni,
and HIP100069) as well as two overlapping circular 0.◦4 radius
regions used to approximate the profile of the excess seen in the
VERITAS survey data (Weinstein et al. 2009, 2011). All results
reported here have been verified by an independent calibration
and analysis chain.
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Figure 2. Spectrum of VER J2019+407, derived from four-telescope data
only. Points are the VERITAS spectrum, while the arrow indicates the upper
limit on emission at 11 TeV. The solid line shows a power-law fit with a
spectral index of Γ = 2.37 ± 0.14stat ± 0.20sys and a flux normalization of
N0 = 1.5 ± 0.2stat ± 0.4sys × 10−12 photon TeV−1 cm−2 s−1.

4. RESULTS

Figure 1 displays the background-subtracted, acceptance-
corrected TeV image of the region of SNR G78.2+2.1. A clear
signal with 319 ± 39 net counts is detected at the location of the
northern rim of the remnant. This signal is significant at the 7.5σ
level after accounting for all test points in the pre-defined 0.◦25
search region. Figure 1 also shows the locations of the gamma-
ray pulsar PSR J2021+4026 (1FGL J2021.5+4026), ∼0.◦5 from
VER J2019+407 at the center of the SNR, and the centroid of
the emission from the remnant seen by Fermi above 10 GeV.

The morphology of VER J2019+407 is derived from a binned
extended maximum-likelihood fit to the counts map before
background subtraction. The cosmic ray component is modeled
as an exposure-modulated flat background and the source by
a symmetric two-dimensional Gaussian convolved with the
VERITAS PSF (68% containment radius of 0.◦09, derived from
an identically processed observation of the Crab Nebula). We
find a fitted extension of 0.◦23 ± 0.◦03stat

+0.◦04
−0.◦02sys

. The fitted

centroid coordinates are R.A. 20h20m04.s8, decl. +40◦45′36′′

(J2000); however, we maintain the identifier VER J2019+407
for the source, which was originally assigned on the basis of
a preliminary centroid estimation. The statistical uncertainty in
this location is 0.◦03, with a combined systematic uncertainty in
the position, due to the telescope pointing error and systematic
errors of the fit itself, of 0.◦018.

Figure 2 shows the spectrum derived from the reconstructed
gamma-ray events within 0.◦24 from the center of the search
region; runs where only three of four telescopes were operational
have been excluded from this sample. The threshold for the
spectral analysis is 320 GeV and the energy resolution is 15% at

3

Aliu et al. ApJ (2013)
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Figure 3. Spectral energy distribution of the Cygnus Cocoon by different
detectors. The arrows below 1 GeV indicate the upper limits obtained by Fermi-
LAT (Ackermann et al. 2011). The points at 12, 20, and 35 TeV are reported by
Milagro for MGRO J2031+41 (Abdo et al. 2007a, 2007b, 2009). The lower data
point at 12 TeV is the Milagro flux after the subtraction of the TeV J2032+4130
contribution (Ackermann et al. 2011). The dot–dashed line shows the best fit to
the Fermi-LAT and ARGO-YBJ data using a simple power-law function. The
thick solid line is predicted by a hadronic model with a proton cutoff energy at
150 TeV. The dotted line is predicted by a model with cutoff energy at 40 TeV.
(A color version of this figure is available in the online journal.)

times higher than those determined by IACTs (Bartoli et al.
2012c, 2013b). Therefore we cannot exclude the possibility
that the fluxes of TeV J2032+4130 and VER J2019+407 are
underestimated by IACTs. In this case, the flux of the Cygnus
Cocoon determined here would be overestimated by about
20−30%. However, the angular sizes of TeV J2032+4130 and
VER J2019+407 are smaller than those of MGRO J1908+06 and
HESS J1841−055, hence the expected discrepancy should be
smaller. In particular, for MGRO J2019+37/VER J2019+368,
if we use the Milagro result instead of the VERITAS one, the
cocoon flux and extension change by less than 10%.

Figure 3 shows all the spectral measurements by Fermi-
LAT, ARGO-YBJ, and Milagro. The Milagro data refer to the
source MGRO J2031+41 (Abdo et al. 2007a, 2007b, 2009),
which should contain the contributions from the overlapping
and nearby sources. In (Ackermann et al. 2011), the flux of
MGRO J2031+41 is corrected by subtracting the extrapolation
of TeV J2032+4130 at 12 TeV. This “corrected” value is also
shown in Figure 3. We should also remind that the Milagro flux
at 12 and 20 TeV was determined in a region of 3◦ ×3◦, which is
too small compared to the Cygnus Cocoon extension and could
contain less than 40% of the gamma-ray emission. For these
reasons, the flux of MGRO J2031+41 is reported in Figure 3 but
is not used in the following discussion.

The flux determined by ARGO-YBJ appears consistent with
the extrapolation of the Fermi-LAT spectrum. Given the con-
sistency of spectra and angular sizes, the major emission of
ARGO J2031+4157 can be identified as the counterpart of the
Cygnus Cocoon at TeV energies. It is worth noting that given
the ARGO-YBJ angular resolution, a detailed comparison with
the morphology found by Fermi-LAT is meaningless.

The combined spectrum of Fermi-LAT and ARGO-YBJ is
fitted (χ2/dof = 2.7/9) by the power-law function dN/dE =
(3.5±0.3)×10−9(E/0.1 TeV)−2.16±0.04 photons cm−2 s−1 TeV−1,
as shown by the dot-dashed line in Figure 3. The upper limits
of Fermi-LAT and ARGO-YBJ indicate weak evidence for the

presence of a slope change or cutoff below ∼1 GeV and above
∼10 TeV, respectively.

4. DISCUSSION

The angular size of about 2◦ places the Cygnus Cocoon
among the most extended VHE gamma-ray sources. At a
distance of 1.4 kpc, the observed angular extension corresponds
to more than 50 pc, making the Cygnus Cocoon the largest
identified Galactic TeV source. Such a large region can be
related to different scenarios. PWNs and SNRs contribute to
most of the extended Galactic TeV sources identified up to now.
Toward the Cygnus Cocoon, two pulsars (PSR J2021+4026
and PSR J2032+4127) and one SNR (SNR G78.2+2.1) have
been detected. As remarked on by Ackermann et al. (2011),
the PWNs powered by these two pulsars are unlikely to
explain the cocoon emission and SNR G78.2+2.1 could be
too young to be the unique accelerator in the cocoon able
to diffuse over the whole region. However, PSR J2032+4127
and the Cygnus Cocoon are well-coincident apparently, and we
cannot rule out the possibility that the cocoon emission is from
the yet undiscovered remnant of a supernova that originated
the pulsar. The favored scenario of Ackermann et al. (2011)
is the injection of cosmic rays via acceleration from the
collective action of multiple shocks from supernovae and winds
of massive stars, which form the Cygnus superbubble. Such
superbubbles have been long advocated as cosmic ray factories
(Bykov & Toptygin 2001; Parizot et al. 2004; Ferrand &
Marcowith 2010). Possibly, the Cygnus Cocoon is the first
evidence supporting such a hypothesis.

For such a large extended region, no significant morphology
and spectrum variation have been found by Ackermann et al.
(2011) in the range from 1 to 100 GeV. The energy spectrum
from 1 GeV to 10 TeV shows a simple power-law shape, which
is very similar to those of SNRs, such as Cassiopeia A, Tycho,
W51C, IC 443, and so on (Yuan et al. 2012). This indicates
that the Cygnus Cocoon may be an unknown SNR, or that the
particle acceleration inside a superbubble is similar to that in an
SNR. No matter which accelerator is responsible for the Cygnus
Cocoon emission, the whole spectral shape of the gamma-ray
emission from 1 GeV to 10 TeV allows us to determine a possible
spectral slope of the underlying particle distribution for the first
time. Different scenarios have been proposed to explain the
emission mechanism of gamma-rays, which can be produced
via inverse Compton (IC) scattering of background photon fields
by high-energy electrons or, in hadronic models, by π0 decay
from inelastic proton–proton or proton–photon interactions. The
electron bremsstrahlung can be ignored if the electron-to-proton
ratio is about 1% as measured around Earth. The close relation
between the emission morphology and the interstellar structure
revealed by Ackermann et al. (2011) favors a cosmic ray origin.
The Fermi-LAT measurement below 3 GeV is also a hint of
the π0 decay feature Ackermann et al. (2013). Moreover, the
gamma-ray spectrum predicted by IC process is always curved,
and it is difficult for the pure leptonic model to produce such a
simple power-law shape from 1 GeV to 10 TeV.

In this work, we adopt a purely hadronic emission model
(Drury et al. 1994) to produce the gamma-ray emission from the
cocoon. In our model, the observed gamma-rays are attributed to
the decay of π0 mesons produced in inelastic collisions between
accelerated protons and target gas. The predicted spectrum is
shown as the thick solid line in Figure 3. It is assumed that the
primary proton spectrum follows a power law with index α and
with an exponential cutoff energy Ec, i.e., Eαe−E/Ec . The value

4
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Figure 1. Significance map around ARGO J2031+4157 as observed by
the ARGO-YBJ experiment. The large circles indicate the positions of
ARGO J2031+4157, MGRO J2031+41, and the Cygnus Cocoon, and the corre-
sponding 68% containment regions (Ackermann et al. 2011; Abdo et al. 2012a).
The position and extension of TeV 2032+4130 and VER J2019+407 are marked
with crosses (Aharonian et al. 2005; Aliu et al. 2014b, 2013). The small circles
indicate the positions of PSR 2021+4026 and PSR 2032+4127.
(A color version of this figure is available in the online journal.)

by ARGO-YBJ, although still within one s.d. error. Recently,
MGRO J2019+37 was resolved into two VERITAS sources,
namely VER J2016+371 and VER J2019+368. So the spectra
determined by VERITAS (Aliu et al. 2014b), which have better
precision and are consistent with both Milagro and ARGO-YBJ
measurements, are used here. We track the four sources path
inside the ARGO-YBJ FOV and simulate the detector response
in the gamma-ray energy range from 10 GeV to 100 TeV. The
detailed simulation of the ARGO-YBJ detector response to
gamma-rays is realized by means of a code based on the GEANT
package (Guo et al. 2010). The four sources contributions are
removed before estimating the extension and spectrum of the
Cygnus Cocoon.

In our previous analysis (Bartoli et al. 2012a), the angular
extension of ARGO J2031+4157 was estimated by fitting the
angular distribution of the events centered on MGRO J2031+41
within a radius of 2.◦2. The excess events outside this region were
considered as due to the Galactic diffuse gamma-ray emission.
Now, after the Fermi-LAT result indicating the presence of a
large extended source, a larger region is used to evaluate the
extension of ARGO J2031+4157. To achieve a better angular
resolution, only events with Npad ! 60 are used. Assuming a
symmetrical two-dimensional Gaussian function for the source
shape, we fit the ARGO-YBJ excess in a square region of
10◦ × 10◦ around ARGO J2031+4157. The result of the fit
gives a source position with R.A. = (307.8 ± 0.8)◦ and decl. =
(42.5 ± 0.6)◦, and an extension σext= (1.8 ± 0.5)◦, consistent
with the angular size of the cocoon as measured by Fermi-LAT
(2.0 ± 0.2)◦, within the statistical uncertainties (see Figure 1).
The dependence of this result on the source spectral energy
distribution is found to be negligible.

To study the spectral behavior of ARGO J2031+4157, the
extension σext = 2◦ and the position of Cygnus Cocoon
determined by Fermi-LAT at 1–100 GeV (Ackermann et al.
2011) are used. The fitting method described in Bartoli et al.
(2011a) is adopted. In this procedure, the path of the Cygnus
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Figure 2. Energy density spectrum of the Cygnus Cocoon as measured by the
ARGO-YBJ experiment. The solid line shows the power-law fit to the data
points. The arrow indicates the 95% c.l. upper limit. Only statistical errors are
shown.

Cocoon inside the ARGO-YBJ FOV is tracked during the
ARGO-YBJ life time. The expected emission is generated by
sampling gamma-rays in the energy range 10 GeV–100 TeV
assuming a power-law function. The variable used to determine
the event energy is the number of hit pads Npad. The energy
spectrum is estimated by comparing the detected signal and
the expected signal in six Npad intervals: 20–39, 40–59, 60–99,
100–199, 200–499, and !500. Before fitting, the contribution
of the four nearby sources is removed. According to our
simulations, this contribution is dominated by the two sources,
TeV J2032+4130 and VER J2019+407, and is equal to 13.2%,
11.1%, 12.1%, 10.4%, and 16.2%, respectively, in the first five
Npad intervals (in the sixth interval, there is no excess).

The best fit to the spectrum (χ2/dof = 2.4/4) is

dN
dE

= (2.5 ± 0.4)

× 10−11(E/1 TeV)−2.6 ± 0.3 photons cm−2 s−1 TeV−1.

(1)

The integral flux above 1 TeV is (1.52 ± 0.37) ×
10−11 photons cm−2 s−1, corresponding to 0.8 ± 0.2 Crab units.
The median energies of the six Npad intervals are 0.40, 0.64,
0.92, 1.4, 2.7, and 6.5 TeV, respectively. The found spectrum
and the corresponding 1σ errors are shown in Figure 2. The
highest energy point is a 95% confidence level (c.l.) flux upper
limit. The flux is higher than in our previous report (Bartoli et al.
2012a), since a larger source region is considered here. This also
gives us a hint that the extension of the source is really larger
than our previous estimation. The given errors on the flux are
statistical. The systematic errors are estimated to be less than
30% (Bartoli et al. 2011a).

Note that to subtract the contributions of TeV J2032+4130 and
VER J2019+407, the gamma-ray fluxes determined by IACTs
are used. Some unclear systematic discrepancy between EAS
arrays and IACTs has been found when determining the flux of
extended sources. It is worth noting that these two techniques
have achieved a good agreement for the point source Crab
Nebula (Abdo et al. 2012b; Bartoli et al. 2013a). The fluxes
of MGRO J1908+06 and HESS J1841−055 measured by the
EAS arrays Milagro and ARGO-YBJ are about two to three

3

Bartoli et al. ApJ (2014)
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Cygnus region
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Executioner
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• 2-3 sources for HAWC, only 1 point source in previous VERITAS/H.E.S.S. analysis, attributed to PWN. On 
2HWC J1928+177, HAWC flux ~10 times larger than published VERITAS limit.

• New analysis by VERITAS, with more data, searching for HAWC counterpart. No detection, will set limits.
• PSR J1928+1748: 88 kyr, 8 kpc, 1.6e36 erg/s (Geminga: 1e5 yr, 288 pc, 3.8e34 erg/s)

• Possible reason why only HAWC sees them: harder, extended.

[VERITAS, Acciari, et al. 2010]
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Rabbit
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• No previously known TeV source.
• New analysis by VERITAS, archival plus new data, source confirmed.
• Tentative association 3FGL J1951.6+2926 / PWN DA 495?
• See [J. Holder, Gamma 2016, arXiv:1609.02881].

Preliminary  
Reported errors  

are stat. only 

https://arxiv.org/abs/1609.02881
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MoUs

• HAWC catalog coming soon
• Preliminary results were shared under MoU, allowing:

• analysis of archival data
• new observations

• Join follow-up papers on the way

+ …

PAPER  IN  PROGRESS

PAPER  IN  PROGRESS



• Not mentioned here:
• AGN variability (+ FACT)
• Flare monitor
• TeV binary search
• Triggered GRB analysis
• Untriggered GRB search
• Dark matter searches
• IceCube follow-up
• Ligo GW follow-up
• Cosmic ray anisotropy
• and many more…

ATEL SENT, PAPER IN PROGRESS

ALERTS SOON, PAPER IN PROGRESS

PAPER IN PROGRESS

ALERTS SOON, PAPER IN PROGRESS

PAPER IN PROGRESS

ATEL SENT

PAPER IN PROGRESS

We’re just getting started!

ATEL SENT, PAPER IN PROGRESS



Thanks!


