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@ Advantages of the method:

@ Generate pseudo-data trial in
analysis binning

Estimating sensitivity to the NMO: Log Likelihood Ratio

» True physics and systematics

kept fixed for generation
@ Fit assuming NO and 10

© Calculate log likelihood ratio
between 10 and NO

» Can account for any systematic given
» Does not pre-suppose shape of ALLH distribution
@ Disadvantages of the method:
» The significance “limited” by number of trials
» Since each trial is a full fit (and given lots of trials needed) having
large number of systematics can became prohibitively time

consuming
Joshua Hignight PhyStat-» Fermilab 2016 September 215!, 2016
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Personal Motivation

Table 14. Default parameter settings used for the LLR analysis. Where p and o are
given, they refer to a Gaussian distribution.

Parameter True value distr. Initial value distr. Treatment  Prior
B3 (%) {40, 42, ....50} uniform over Fitted No
[35,55] F
3 (7 8.42 p=_842 a=0.26 Fitted Yes
B2 (®) 34 =734 =1 Nuisance ~ N/A
AM?2 (1072 eVY) pu=24,0=005 p=24,0=0.05 Fitted No
Am? (1077 eV?) 7.6 p=760=02 Nuisance N/A
bep (9) 0 Uniform over [0, 360]  Fitted No
Overall flux 1 =1 0=01 Fitted Yes
factor
NC scaling 1 w=10=10.05 Fitted Yes
v/o skew 0 u=0,o0=0.03 Fitted Yes
n/e skew 0 p=0,a=0.05 Fitted Yes
Energy slope 0 w=0,c=0.05 Fitted Yes

Note. The T indicates that the initial values for 8,3 are generated in a special way: a total of seven
iniial values is tried. They are x4+ i x 5, where x is the randomly drawn value

and i € [-3, —=2,....3].

« Both ORCA and PINGU use fixed true values for most
parameters (except AM? and solar pars. for ORCA)

« This is ok, but in principle depends on what values are

chosen from true parameter space
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Backhouse (NOvVA)

Coverage

» Frequentist coverage means: “if the true value of parameter x is A, 68%
of experiments will include A in their confidence interval for x”

» FC procedure achieves this almost tautologously by throwing mock
experiments at each A and finding the A%, that would have included
that A in 68% of the experiments

» In the presence of a parameter y not displayed on the plot (a “nuisance
parameter”)

» Want correct coverage no matter the true value of that parameter

» Obviously impossible in general, infinite array of possible values for y, all
requiring different critical values in principle

» But e.g. for two gaussian variables profiling over y gives correct
coverage, even without invoking FC corrections

» So how does it work out in practice for our experiment?

C. Backhouse (Caltech) LBL analysis September 19, 2016 20/ 30
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Backhouse (NOvVA)

 Could not find satisfactory way to achieve proper
coverage using a toy model inspired by nue appearance
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Pragmatism

» No satisfactory way to “integrate out” hierarchy or octant possible

» Continue to plot four curves
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My Toy Model
* Two bins:

— Signal bin affected by par. of interest (t) and nuisance par. (S)
— Sideband bin only affected by nuisance parameter (S)

« Three fitting approaches:

— No Fit: Only look at signal bin and don’t fit nuisance parameter
— Fit Signal: Only look at signal bin and fit nuisance parameter
— Fit Both: Look at both signal an sideband and fit nuisance par.
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Hypothesis Testing

» Defined two hypothesis: H, (t = 0) and H; (t = 15%)
« What should we expect?
— Stat. Significance: 3o (uncertainty is 5%)
— Stat. + Nuis. Significance: 2o (uncertainty is 7.5%)
— Stat. +Nuis w/ Sideband: 2.5¢ (uncertainty is 6%)
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Test Statistic

Don’t fluctuate nuisance:
— 3o for signal bin only
— Independent of fitting nuisance

— Worse significance w/ sideband

— Not expected 2.5c significance
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Test Statistic
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When does it matter?

Sideband is relevant if it reduces nuisance uncertainty
If sideband fits nuisance very well, not fluctuating may be ok

However, no reason to not fluctuate since TS distribution
should be identical for significance to match

No Fluct. Fluct.
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Except...

Conditioning (cont.)
The 1958 thought expt of David R. Cox focused the issue:

— Your procedure for weighing an object consists of
flipping a coin to decide whether to use a weighing
machine with a 10% error or one with a 1% error; and then
measuring the weight. (Coin flip result is ancillary stat.)

— Then “surely” the error you quote for your measurement
should reflect which weighing machine you actually used,
and not the average error of the “whole space” of all
measurements!

— But classical most powerful Neyman-Pearson hypothesis
test uses the whole space!

In more complicated situations, ancillary statistics do not
exist, and it is not at all clear how to restrict the “whole
space” to the relevant part for frequentist coverage.

In methods obeying the likelihood principle, in effect one
conditions on the exact data obtained, giving up the
frequentist coverage criterion for the guarantee of relevance.

Bob Cousins

Bob Cousins, PhyStat-nu Fermilab 2016 11
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Summary

* Lots of very interesting material from both the Tokyo and

Fermilab organised PhysStat-nu workshops
* https://indico.fnal.gov/conferenceDisplay.py?confld=11906
« http://indico.ipmu.jp/indico/internalPage.py?pageld=1&confld=82 (Broken?)

» Tokyo workshop has a live summary document:
 http://www.hep.ph.ic.ac.uk/~yoshiu/PhyStat-nu-IPMU-2016-Summary-Draft/

« General consensus:
* p-value (sigma) is not good enough to inform us
» Experiments should report both Frequentist and Bayesian results
* When using Bayesian method, must explore sensitivity to priors
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Summary

* MH, CPV, 0,5 oct., all introduce violations of Wilk’s theorem.
* NO clear answer on best practices for treating as nuis. pars.

« My toy model says we should sample random true values
In order to obtain correct sensitivities

 Also some discussion on conditioning frequentist method

 No guaranteed coverage, but not all statisticians care
(Bayesians)
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Toy Model Concept

* MH sensitivity is limited to small regions of 6, and E
« Other parameters, e.g. d.p, affect different regions

« Two bins:
— Signal bin affected by par. of interest (MH) and nuisance par. (d:p)
— Sideband bin only affected by nuisance parameter (5-p)
— Sideband can be used to reduce impact of 6. (in principle)
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Some Nice Numbers

Choose some nice properties:

— Set signal bin to 400 events (5% Stat. Uncertainty)

— Set nuisance uncertainty to 5.6% (7.5% Stat. + Nuis. Uncertainty)
— Sideband size controls precision to measure nuisance patr.

— This example has sideband uncertainty at 4.1%

— Reduces to 6% Stat. + Nuis. Uncertainty
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Feldman-Cousins

« Need to interpret value of Ay? at each value of t

1. Define a procedure to use in data
«  Count number of events
 Choose a fitting method, e.g. fit nuisance in signal and sideband bins
«  Compute Ay? at a particular point in par. of interest space

2. Simulate N experiments of possible results you might get
« Gaussian or Poisson statistics
« Different experimental setups (some systematics)
« Different possible worlds (vary physics parameters)
3. Count experiments that correspond to certain results
« Use same procedure as defined for data
«  How many experiments have Ay? < Y?
 What value of Y contains 90% of the experiments? (or 68%, 95% ...)

4. Interpret likelihood of getting the observed data

1 Oct 2016 16



Fluctuate or Not?

E.g. : No nuisance fit

FiX nuisance value:

— No impact from nuisance
— EXpect statistics only result
— 1o C.L. at familiar Ay2 =1

Fluctuate nuisance value:
— Assume gaussian prior

— Effect is to increase typical
value of Ay?

— 1o C.L. moves to Ay? ~ 2.25

1 Oct 2016

S
—_
N
o
o
o

'No Fit && No Fluct.

Pseudo-Experiment

, 8000 No Fit && Fluct.
2 .
[0}

£ 6000}

o -
X 68.3% ;
W 4000} o O
O

©

3

QO

/)]

o




Fluctuate or Not?

« As expected, not fluctuating nuisance leads to parameter of
Interest being constrained to 5% (Stat. Uncertainty)

* When fluctuating, we get the expected 7.5% (Stat. + Nuis.)

- No Fit && No Fluct.
+— No Fit && Fluct.

. Stat. Unc.
_ Stat. + Nuis.
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Fluctuate or Not?

 Fitting for the nuisance parameter in signal bin only doesn’t
change the situation

« Single bin can’t distinguish it from the parameter of interest
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Fluctuate or Not?

 Fitting in both bins does improve the precision
« Whether to fluctuate has smaller impact, but not zero
« Should depend on how well we measure sideband

- Fit Both && No Fluct.
~— Fit Both && Fluct.

~ Stat. + Nuis. |

Stat. Unc.

010 -005 000 005 0.10
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David van Dyk

Frequentist or Bayesian?

Do you have to choose??

@ Bayes prescribes methodology.
Frequentists evaluate methods.

o
@ Frequency evaluation of Bayesian methods.

@ Model fitting: often little difference in fits and errors.
o

Why not control rate of false detection
and assess probability of new physics?

@ Why throw away half of your tool box?

>

I'm impressed with the openness of neutrino researchers to
both Bayesian and Frequency based methods.

@ Lots of Bayesian and Frequentist proposals at PhyStat-v.

@ My experience with cosmologists and particle physicists.
1 Oct 2016 21



David van Dyk

Strategies

What is a physicists to do?
@ Controlling false discovery is critical in physical sciences.

@ Comparing p-values with a predetermined significant level
can control false discovery.... if used with care, e.g., no cherry picking!

@ When confronted with small p-values researchers
..even statisticians!l... may believe Hy is unlikely.

@ Bayesian solutions can better quantity likelihood of Hy / H;.

@ Solution: Compute both global p-value and Bayes Factor.

>

But be Careful...

@ quantification of p-values in non-standard problems
@ choice and validation of prior distributions

remain challenging!

1 Oct 2016



Xiao-L1 Meng

But what is Statistical/Probabilistic Inference?

Satstio

BFF 321 @ An ultimate intellectual game: “to guess wisely and to
guess meaningfully the errors in our guesses.”

o (XL-Files, Oct 2015)

R @ Impossible to access exact errors, but a full spectrum of

possibilities for accessing probabilistic errors.

e Balancing the degree of inexactness (Relevance) & the
reliance on assumptions (Robustness).

Xiao-Li Meng

Pure Frequentist (Fully unconditional)
Most Robust but Least Relevant

Pure Bayesian (Fully conditional)
Most Relevant but Least Robust

But life is about compromise:

Conditional frequentist, Objective Bayesian, Fiducial ...

23



Xiao-L1 Meng
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A Unified Picture of BFF (and Inference)?
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Steve Biller

This gets you nowhere!!

A ﬁeg)&(eni‘&Sﬁ USeS | peccczé/e / ogfc

Zo ansScoer Z'/?e wron aeS IO/’? w/w/e

7 362}/65:62/? d/?Sa)erS Z/?e h /7Z‘ g)&(eSZ’xo

éy rrcki ng ass z,(m/?z‘; s Z‘/?czz‘ noéoa’y
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ALWAYS ask the right question, even if the
answer isn’t necessarily straight-forward!!
(this is what being a scientist is all about)

1 Oct 2016
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Steve Biller

90% CL/CI upper bounds on a possible average
signal level from a simple counting experiment

Initial Test:|Improved Cuts:
, n=2( B=0.5, n=0

Standard Frequentist

1.8 (worse)

Feldman-Cousins

1.94 (worse)

Bayesian (erior unformafie

2.3 (better)

Can appear to be overly
strict bounds on the
average signal strength

1 Oct 2016
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New analysis technique:

suppresses backgrounds

by a factor of 10 with no
loss in signal efficiency!
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Steve Biller
What’s the way out??

There is no “correct” choice of prior!

* Where possible, use informative priors or
follow standard conventions (if they exist);

* Otherwise, choose simple prior forms that are
easy to understand and visualise (e.g. uniform);

e Use common (ie. standardised) parameter
choices that “make sense’” for these priors;
[0 If there’s an amblgmty that leads to a non-

conservative bound, show the sensitivity to the
choice of prior

AP - ; PR T — i S ki R oA
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Bob Cousins

Continuous Mass Hierarchy variable?

The +1 and -1 for MH appear in the equations as simply that: arithmetic signs.

Various authors (e.g., Capozzi, Lisi, and Marrone, PRD 89 013001) have
suggested replacing £1 with (unbounded) continuous variable a.

Reminiscent of continuous “number of light neutrino species” (which recall had
BSM physics interpretation).

In frequentist treatment, | think it is mostly a matter of presentation, since
results from discrete way map to continuous way, and vice versa (particularly
If F-C construction is used for confidence interval for o, with relevant set of
C.L.s).

| encourage continuous a approach as part of toolkit.

But...Eligio Lisi has explained to me that a is highly correlated with Am?, and
contributes to increase its overall uncertainty. This leads to the undesired

result that power is lost due to consideration of unphysical (or at least non-
SM) values of MH. Ugh.

NOTE added after talk: | mis-stated Eligio’s point above at the time of the
talk; | believe that it is now repaired. -BC

Bob Cousins, PhyStat-nu Fermilab 2016 18
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Bob Cousins

Addition of Nuisance Parameter 6 to MH Test

Small variation of nuisance parameters seems not to upset the formalism,
and some relevant examples with toys still give nicely Gaussian distribution of
LR test statistic. However the situation can become harder — see talk by Sara
Algeri at Tokyo.

Ifthe CP phase o is treated as a nuisance parameter in the MH
determination, then great care is needed.

Providing the MH results as a function of 6 (same 6 in humerator and
denominator of LR) would seem to be mandatory, before attempting to
“eliminate” d by profiling or marginalizing..

Bob Cousins, PhyStat-nu Fermilab 2016 19
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Bob Cousins

But something about “eliminating” 6.p reminds me of the quote by
“likelihoodist” A.W.F. Edwards:

“Let me say at once that | can see no reason why it should always be
possible to eliminate nuisance parameters. Indeed, one of the many
objections to Bayesian inference is that it always permits this elimination.”

(commenting on J.D. Kalbfleisch and J.D. Sprott, J. Roy. Stat. Soc. Series B
32, 175 (1970). See my paper Oxford05.)

For further reading:

For PhyStat 2005, | wrote, “Treatment of nuisance parameters in high energy
physics, and possible justifications and improvements in the statistics
literature”. Small compared to:

Luc Demortier, “P Values: What They Are and How to Use Them” http://www-
cdf.fnal.gov/~luc/statistics/cdf8662.pdf (174 pages!)

Bob Cousins, PhyStat-nu Fermilab 2016 22
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Louls Lyons

Wilks’ Theorem, contd

Examples: Does Wilks" Th apply?

1) HO = polynomial of degree 3
H1 = polynomial of degree 5
YES: AS distributed as y2 with ndf = (d-4) — (d-6) = 2

2) HO = background only
H1 = bgd + peak with free M, and cross-section

NO: HO and H1 nested, but M, undefined when H1-> HO.

(but not too serious for fixed M)

3) HO = normal neutrino hierarchy ¥
H1 = inverted hierarchy AR
NO: Not nested. AS#y2 (e.g. can have Ay2 negative)

N.B. 1: Even when W. Th. does not apply, it does not mean that AS
is irrelevant, but you cannot use W. Th. for its expected distribution.

AS+7y2

N.B. 2: For large ndf, better to use AS, rather than S, and S, separately

1 Oct 2016
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