mPMT/NEUT workshop 15/16 July 2016 @ Nikhef

https://indico.nikhef.nl/conferenceDisplay.py?confld=414

pw: hyperkm3net (partly confidential content)

"This workshop aims to bring people from Hyper-K, IceCube and KM3NeT together to enable closer cooperation and to benefit from common developments in technology and software."

HyperK/KM3NeT/IceCube

Organizers:

Tom Feusels, Akira Konaka, Thomas Eberl, Clancy James, Pasquale Migliozzi, Paschal Coyle, Dorothea Samtleben, Darren Grant

multi PMT hardware

- KM3NeT DOM, IceCube-Gen 2 mDOM, HK/NuPRISM mPMT, PMTs in CHIPS
- PMT options (Hamamatsu/ETEL/HZC) & new photosensors (VSiPMTs)
- PMT dark rates
- Mechanics, pressure vessels
- Electronics
- Mass production & testing
- Calibration & event reconstruction @ KM3NeT

Neutrino generators / Atmospheric neutrinos / Systematics

- Neutrino generator overview
- gSeaGen
- NEUT tutorial
- DIS in NEUT/GENIE
- Reweighting of NEUT
- Atmospheric neutrinos/uncertaintites
- Intrinsinc limits in event reconstruction

Multi-PMT design by KM3NeT 31 3" PMTs in one 17inch sphere

Interest in multi-PMT designs from several experiments: IceCube, Hyperk, nuPRISM, CHIPS

IceCube Gen2 prototype design

CHIPS test array

HyperK prototype design

νPRISM prototype design

Why Multi-PMTs for Hyper-K/near detector?

Physics:

- Directionality: each single PMT sees a different part of the tank. Improves reconstruction and background suppression.
- Neutron tagging in Super-K and Hyper-K: neutron absorption by H/Gd, with prompt γ emission of a few MeV. Reduced random background suppression by using directionality should increase tagging efficiency.
- Reconstruction has additional information from individual 3" PMT acceptance which should help the minimizer.
- Improved granularity should help reconstruction and enlarging fiducial volume: Currently fiducial volume cut 2m from the ID/OD wall. Smaller tubes should increase performance (eg. PID) near the wall.

Why Multi-PMTs for Hyper-K/near detector?

Mechanics:

- PMTs encapsulated in pressure vessel, with thickness / diameter > 0.03-0.04 for acrylic (15-20mm)
 ⇒ No depth limitation on Hyper-K tank height.
- Natural solution for in-water electronics: only one water-proof connector to module needed (penetrator). Well known technology.
- Small (3") PMTs do not need magnetic field shielding.
- Containment of radon contamination from PMT glass inside closed acrylic pressure vessel.
- Natural integration of OD and ID. Shorter base of small ID PMTs seriously decreases 60cm ID/OD dead space, hence increase FV.

The VSiPMT

Vacuum Silicon PhotoMultiplier Tube (VSiPMT)

An innovative design for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a Vacuum PMT standard envelope

The classical dynode chain of a PMT is replaced with a SiPM, acting as an electron multiplying detector.

VSIPMT VS PMT

	PMT	VSiPMT	comparison
Efficiency	Photocathode x 1st dynode	Photocathode x Fill factor MPPC (→1)	≈ comparable (slightly worse)
Gain	10 ⁶ - 10 ⁷	≈ 10 ⁶	≈ equivalent
Timing	nsec	fractions of nsec (no spread dynodes)	+ VSiPMT
Power Consumption	Divider Dissipation	No dissipation: just amp. G=10-20 (<5mW)	+VSiPMT
Stability H.V.	H.V. stabilization for stable gain	No H.V. stability (plateau)	+VSiPMT
Dark counts	≈ kHz @ 0.5pe	≈100 kHz/mm² @0.5pe	+PMT
Photon counting	difficult	excellent	+VSiPMT
Linearity	depending on gain	depending on focusing	≈+PMT
Peak-to-valley	≈ 3 (typ.)	> 60	+VSiPMT
Afterpulse(@0.5 pe)	≈ 10%	Next gen. MPPC <0.3%	+VSiPMT
SPEresolution	≈ 30% (typ.)	≈ 17.8%	+VSiPMT

VSiPMT as a solution for KM3NeT

Dark count rate

Requirement:

< 3kHz at 0.3pe threshold

VSiPMT

Dark count rate unacceptably large 2 orders of magnitude above requirements

Intrinsic limit, two possible approaches:

- high thresholds,
- multiple coincidences.

New generation of Hamamatsu MPPC exhibits a factor 10 improvement (still high)

Hamamatsu R12199-02

Requirement quite satisfactorily fulfilled. 190 PMTs tested:

- ≈ 68% below 1kHz,
- 86% less than 2kHz.

Small fraction out of the allowed range.

Conclusions and Perspectives

VSiPMT is an innovative design for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a Vacuum PMT standard envelope

It has many **UNPRECEDENTED** features, such as:

- Photon counting capability;
- · Low power consumption;
- · Large sensitive surface;
- Excellent timing performances (low TTS);
- High stability (not depending on HV).

making it a very attractive solution in many applications

STILL IMPROVABLE!!!

New generation of Hamamatsu MPPCs:

- sensibly lower afterpulse rates;
- lower noise: much reduced dark counts;
- higher gain → no amplification required (persp.);
- focusing optimization required.

Readout Schemes

- > ADC
 Measure amplitude at fixed times
 - Conventional approach used in many experiments, incl. IceCube
 - Power consumption too high for mDOM
- Leading edge time and time-over-threshold Measure time at fixed amplitude
 - Can be implemented at low power
 No current flow between PMT base and mainboard while signal below threshold
 - Potential ambiguities with one (few) thresholds

Summary & Outlook

- > mDOM readout scheme
 - leading and trailing edge time at multiple thresholds for all 24 PMTs
 - either 4 comparators in discrete design or 63-comparator ASIC
 - discrete design: 1.2 GHz sampling for lowest threshold; 600 MHz sampling for the others
- > Half-mDOM evaluation system has been developed
 - front-end, data transmission to MB, mainboard
 - capability to externally inject and monitor analog signals
 - system currently in commissioning
- Expect design studies with evaluation system until end of 2016; full mDOM mainboard by end of 2017

Inter-PMT Calibration: Principle

- Coincident light from ⁴⁰K decays
- 465 PMT-pairs, 93 fit parameters

15/07/16

K.Melis, mPMT/NEUT workshop

Neutrino generators Reweighting Intrinsic resolutions

Updated FSI model tune, uncertainties

Work ongoing on T2K (Tom Feusels is the expert!) to include:

- New data sets (DUET experiment)
- Comparisons to other generators
- Updated fit machinery, parameterization

Kendall Mahn

Parameterization Summary

Slightly outdated error table:

- Less significant processes (e.g. CC coherent) get a simple normalization uncertainty
- CC Other Shape is a ~normalization uncertainty to allow for large uncertainties at low energy and small at higher energy, set from a lack of pion data
- Hadronization uncertainty under development

Kendall Mahn

Summary

On T2K, extensive program to determine appropriate uncertainties on the underlying cross section models within NEUT generator

 KM3NeT may be interested in neutrino/antineutrino cross section measurements on water made with T2K near detectors

Model development effort is a challenging task currently on 3rd iteration:

- Have implemented new models on NEUT to better represent data
- Propagate uncertainties through weighting techniques ("reweighting") or by re-running the MC in a limited fashion (FSI)
- No perfect model yet, and outstanding questions remain, but uncertainties inflated or theoretical uncertainties added.

Remaining differences between GENIE and NEUT

Outside of the position of the transition between resonant and DIS, there are other differences between GENIE and NEUT for deep inelastic interactions:

- For the low-W DIS modes, NEUT only produces nucleons and pions, while GENIE allows strange particle production (kaons and hyperons)
- The scheme to avoid double counting of events between resonant and deepinelastic modes in the low W region is quite different
- For the high W DIS events, NEUT uses PYTHIA 5.72 and GENIE PYTHIA 6.
 Looking at putting PYTHIA 6 in NEUT
- Modification of the PDF due to nuclear effects (shadowing/anti-shadowing) implemented in GENIE but not in NEUT
- Model for the Fermi momentum is different in the two generators, GENIE uses the Bodek-Ritchie model which gives an high momentum tail

Tuning of charged hadron multiplicities in PYTHIA

Tuned PYTHIA parameters using expertise from members of the HERMES collaboration

Allows to properly reproduce average charged hadron multiplicities when tested in GENIE:

Also found some difficulties:

- → dispersion of the charged hadron multiplicities
- neutral hadron multiplicities

"Further tuning is ongoing"

T. Katori, S. Mandalia arxiv: 1412.4301v3

Summary

- Modeling of the deep-inelastic interactions in GENIE and NEUT differ in the way they deal with the transition region between resonant and DIS models
- At low W, the generators use custom models, and PYTHIA at higher W
- Update of NEUT code (and a fix in GENIE) ongoing, after that the generators should agree for the global kinematic variables W and Q² for free nucleons
- Discussed some possible sources of systematic uncertainties:
 - Corrections by Bodek and Yang for low Q² region
 - relation between the structure functions
 - multiplicities of the charged hadrons

Sources of Fluctuations

Jannik Hofestädt

'hadronic state' = composition of particle type and momenta

'propagation' = cascade evolution (= random number seed)

- Simulating many different 'hadronic state' with many different random seeds ('propagation') → separate effects
- ullet 'photon sampling' = number N $_{
 m V}$ of detected photons ullet σ_{N} \propto \sqrt{N}

Hadronic Cascade: Energy Resolution

KM3NeT preliminary

- N_γ scales faster than linear with E_h
 - → relative error reduction factor w_r

$$\frac{\Delta E}{E} = \frac{\Delta N_{\gamma}}{N_{\gamma}} * w_r$$

Here: ΔE = RMS

- Light yield fluctuations dominated by
 - hadronic sate
 - → event generator

Jannik Hofestädt

ve & ve CC Resolutions (E, y)

$$y=1-E_l/E_v$$

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

- nearly identical for $v_e \ \& \ v_\mu$, as dominated by had. cascade fluctuation
- ΔE limited by intrinsic fluctuations, $\Delta \theta$ limited by detected photon statitsics
- ΔE ↔ Δθ strongly correlated via Bjorken y (= interaction inelasticity)

Jannik Hofestädt

Summary

- Derived limiting energy & direction resolutions for (isolated) hadronic cascades / muons / electrons and combined these to v_{e,µ} CC events
- Neutrino resolutions dominated by large intrinsic errors in had. cascade
 - direction resolution dominated by detected photon statistics
 - energy resolution dictated by fluctuations due to different 'hadronic states'
 - similar interaction physics in ice → expect very similar effects for PINGU (but different direction reco effects)
- ORCA resolutions relatively close to these intrinsic limits
 - → 'neutrino generator physics' matters !!!
- Outlook:

Jannik Hofestädt

- Paper in preparation
- Study effect of different neutrino generators
- What is PMT density 'threshold' for identifying had. cascade substructure?
 - → gain in resolution?

Many areas of common interest also with HyperK

Fruitful discussions and new connections

Follow-up encouraged!