Status/schedule GVD construction, results from 2015/16 cluster MANTS Meeting, Mainz, 1-2 October 2016 Vladimir Aynutdinov, INR RAS (Moscow), for the Baikal Collaboration #### **Outline:** - 1. The first demonstration GVD Cluster "Dubna": operation and selected results - 2. Upgrade of DUBNA array in 2016 - 3. Infrastructure - 4. Schedule GVD construction # First Demonstration Cluster "DUBNA" (April 2015) - ➤ 192 OMs at 8 Strings 2×12 OMs per String. - Acoustic Positioning System - ➤ Instrumentation String for environment monitoring - LED beacon for inter-string time calibration Active depth 950 – 1300 m Instrumented volume 1.7 Mt #### Selected results with Cluster "DUBNA" ## Operation from April 2015 up to February 2016 - Operation: 213 days - Efficiency: 72 % - Runs: 622 - Event rate $\sim 10^2$ Hz - Life time ~184 days - Data: 1.6×10^9 events Trigger: coincidence of two neighboring OMs with thresholds 1.5pe & 4pe - 1. Cascade detection - 2. Muon detection - 3. Analysis of malfunctions and equipment reliability #### Cascade detection ("Cascades in GVD" Zhan DJILIKIBAEV on 2 Oct 2016 from 14:30 to 15:00) #### 2015 data analysis - ➤ Total number 437 970 024 events (thresholds: low/high = 1.5/4 p.e.) - \triangleright Life time: = 41.6 days #### After all cuts | Cuts | Events | |-------------|--------| | E > 30 TeV | 1291 | | E > 60 TeV | 859 | | E > 100 TeV | 539 | #### **Demonstration Cluster** For 1 year observation 0.4-0.6 events are expected from IC flux with E $^{-2.46}$ spectrum (E>100 TeV, N $_{hit}$ > 20 OM) One event with $N_{hit} = 17$ OMs and E > 100 TeV ## **Muon detection** #### Status of analysis - 1. Trigger optimization for maximum muon effective area. - 2. Data preparation (event building, calibration, OM coordinate evaluation) - 3. Noise rejection - 4. Muon track reconstruction - 5. MC for actual cluster configurations and background conditions. - 6. Rejection events from muon groups - 7. Reconstruction of zenith angle distribution of atm. muons - 8. Up-going muons selection In progress now Reconstructed zenith angle distribution (groups of muons not fully suppressed) ## Nearly vertically upward going muons ## Selection of nearly vertically upward going muons - > Section with >4 hit OMs - ➤ Mean signal pass velocity between fixed OM and other hit OMs $$v_i = \frac{1}{n-1} \sum_{i,j}^{z_{ij}}; \quad 0.2 < v_i < 0.4 \text{ m/ns}$$ Mean signal pass velocity along section $$v_{sec} = \frac{1}{n} \sum v_i$$; 0.22 < v_{sec} < 0.34 m/ns ## Cluster DUBNA: malfunctions and weak points #### **Malfunctions** - > 4 channels - > 1 acoustic modem at Str.1 - ➤ 1 ADC unit #### **Connection losses with ADC units** 2015: April-October ## The use of ADC of different types 4 versions of ADC units (17 units in total) 4ch ADC (Spartan 3) 3 Trigger rate <10 HZ 4ch ADC (Spartan 6) 8 12ch ADC (Spartan 6) V₁ 5 Mechanical ventilation 12ch ADC (Spartan 6) V₂ 1 ## Analysis of channel malfunctions 4 channels out of operation (2012 - 2015) #### Test of faulty modules at the lab - 1. Breakdown of OM controller: 1 - 2. Leaking of OM connector: 1 - 3. Lack of communication with ADC unit: 2 (malfunctions of the CeM) #### Malfunctions of the CeM 1. Two channels out of operation. Bad contact of SMA connector in the CeM **2. The loss of connection with ADC board** Mistake of ADC firmware. 3. Failure of ADC boards ADC #205, 12-ch (October 2015) Power breakdown while loading basic ADC firmware ADC unit was recovered by reprogramming. **GVD Section: 12 channels** ## OM reliability estimation | Year | 2012 | 2013 | 2014 | 2015 | Summ | |--|------|------|------|------|------| | Number of installed OMs | 24 | 48 | 40 | 80 | 192 | | Time of operation, year | 4 | 3 | 2 | 1 | - | | Total operating time of OMs (OM number × year) | 96 | 144 | 80 | 80 | 400 | | Number of failure channels | 1 | 1 | 2 | 0 | 4 | | Number of failure OMs | 1 | 0 | 1 | 0 | 2 | Failures of channels: ~1 failures / 100 year Failures of OMs: ~1 failures / 200 year Calculation OM reliability using FIDES gives: 1 failures / 142 year ## **Upgrade of DUBNA array in 2016** #### Main objectives: - Repair faulty nodes; - Unification ADC units; - Installing 8 additional Sections on the cluster ## **Expedition 2016** - 1. 4 strings were partially disassembled, ADC units were upgraded. 7 strings 12ch ADCs; 1 string 4ch ADCs. - 2. Peripheral strings were moved apart from 40 to 60 m. - 3. 8 sections were installed at the top of the cluster (96 OMs). Number of OMs on a string is increased from 24 to 36. - 4. 3 new calibration LED sources were added. - 5. Electro-optical cable has been deployed for the connection of the second cluster to shore - 6. A system for time synchronization between clusters has been installed for testing. ## **Upgraded cluster "DUBNA"** - DAQ center - Instrumentation string - Cable Buoy Station - ➤ 288 OMs at 8 Strings 3×12 OMs per String. - Acoustic Positioning System on each string. - ➤ 4 LED beacons for inter-string calibration. - ➤ Instrumentation String for environment monitoring. Active depth 750 – 1275 m Instrumented volume 6.0 Mt ## The working configuration of the Cluster 22 working sections. 264 working channels. 2 sections out of operation (Failures ADC #200 and #206) Problem was diagnosed at March 30 Exact cause is unknown Possible cause: power breakdown during detector operation 27 March: Mechanical damage to the electro-optical cable close to the shore. 29 March: The cable was restored. ## Cluster operation - 2016 #### Cumulative number of ADC records Statistic for ~2 month operation: (10 April – 23 Jun) • Operation: 55 days • Efficiency: 75 % • Total: 177 Runs • Trigger rate 60 - 110 Hz • Data: $3.02 \cdot 10^8$ events Trigger: coincidence of two neighboring OMs with thresholds 1.5pe & 4pe Time calibration of the channels and strings was performed. Data analysis in progress now. #### Check the time calibration: two methods #### Signal delay of each channel #### Time difference of two channels $$dT_{TST} = T_{OMI} - T_{OM2}$$ T_{OM} - OM delay $$T_{OM} = dT - T_0 + T_{CABLE}$$ $T_0 \approx 500 \text{ ns} - \text{time shift}$ of the test pulse T_{CABLE} - lab. measured cable delay $$dT_{LED} = dT - dT_{exp}$$ $dT_{exp} = 64.9 \text{ ns}, \text{ expected}$ time difference Consistency of two calibration procedures New LED light sources for inter-string calibration 3 new LED light sources (LED beacon) for the time calibration of the Strings were installed. Each LED beacon comprises 12 synchronized LEDs: 6 vertical and 6 horizontal. LED: Kingbright L7113 PBC-A ## Infrastructure #### **Reserve Shore Station** Reserve Shore Station **Operating Shore Station** #### Baikal'sk The building in Baika'lsk is prepared for a local lab and a temporary store for optical modules of the next stages of the detector. #### The optical modules production facility (Dubna) New production line of optical modules for the next detector extensions is started in Dubna. The line capacity is currently 8 modules per day. ## Long-term testing room New facility for long-term tests of optical modules is operating in Dubna. ## **GVD-1** timeline ## Cumulative number of clusters vs. year | Year | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |----------|------|------|------|------|------|------| | Clusters | 2/3 | 1 | 2 | 4 | 6 | 8 | | OMs | 192 | 288 | 576 | 1152 | 1728 | 2304 | Completion of the GVD Stage 1 is expected in 2020 #### Present and future of the BAIKAL-GVD ## **Conclusion:** - Prototyping & Early Construction Phase of Project is concluded with construction and commission of the first GVD Cluster "Dubna" in 2015 - In 2016 Cluster "Dubna" has been upgraded to baseline configuration of GVD Cluster with 288 OMs - Completion of the GVD Stage 1 is expected in 2020 # Thank you ## New LED light sources for calibration system ## **Event building - 2016** Correct trigger number (N_{TR}) on all ADC boards provides a simple way of the merging of ADC records; Test of the event building: Δt distributions of the time intervals between records. Test parameter: $\sigma(\Delta t)$ $\Delta t = t_1 - t_2 \approx 0 \pm 10 \text{ ns (ADC clock } 100 \text{ MHz)}$ ∆t distribution for ADC #209 and ADC 190 (Cluster Center) #### $\sigma(\Delta t)$ for all ADCs in relation to Cluster Center ADC | #ADC | 220 | 208 | 195 | 211 | 219 | 197 | 212 | 207 | 217 | 204 | |-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | σ, ns | 5.4 | 5.8 | 6.0 | 5.7 | 5.7 | 5.7 | 5.6 | 6.0 | 5.8 | 5.6 | | #ADC | 209 | 202 | 216 | 192 | 210 | 214 | 222 | 215 | 213 | 221 | | | | | | | | | | | | | ## History 2012. The first full-scale GVD string (24 OMs) ADC – FPGA Spartan 3, 4-ch 2013. 2 additional strings ADC – FPGA Spartan 6, 4-ch 2014. 2 additional strings ADC – FPGA Spartan 6, 12-ch (V1) 2015. 3 additional strings ADC – FPGA Spartan 6, 12-ch (V1,2) Test of location of the pulses in the time window of ADC (peripheral string, bottom) Test of location of the pulses in the time window of ADC (central string, center) Str 2 1200 Pulse positions: 2.5 - 4 mks #### **Demonstration Cluster** For 1 year observation 0.4-0.6 events are expected from IC flux with E $^{-2.46}$ spectrum (E>100 TeV, N $_{hit}$ > 20 OM) #### 2015 data analysis - ➤ Total number 437 970 024 events (thresholds: low/high = 1.5/4 ph.el.) - \rightarrow Life time 3 597 921 s = 41.6 days #### After all cuts | Cuts | Events | |-------------|--------| | E > 30 TeV | 1291 | | E > 60 TeV | 859 | | E > 100 TeV | 539 | #### Expected number of events for 1 yr. observation #### Hit OMs multiplicity after all cuts Promising event (e584:8566299) $$E = 158 \,\text{TeV}, \; \theta = 59^{\circ}, \, \rho = 73 \,\text{m}, \; z = -62 \,\text{m}$$ #### **Synchronization System** #### **Cluster Synchronization Controller**