Status of KM3NeT ARCA & ORCA

Astroparticle and Oscillation Research with Cosmics in the Abyss

(Same technology for different goals)

KM3NeT DOMs and DUs

- 31 PMTs installed in 17" Digital Optical Modules (DOMs)
- 18 DOMs (Digital Optical Modules) on each Detection Unit (DU), spaced by ~36 m or ~9 m (in ARCA or ORCA layout, resp.)
- DUs placed at distances of ~90 m and ~20 m, resp. for ARCA and ORCA
- Same DOMs but different DUs (as to mechanical layout and adaptation to different infrastructures) used in ARCA and ORCA

More on Digital Optical Modules

- 31 PMTs of 3" photocathode in a 17" glass sphere
- Optical gel coupling between PMTs and glass
- Reflection rings around the PMTs to increase detection surface
- Electronics, optics for long-range communications and calibration devices (including: 'nanobeacon' LED pulser, compass/tiltmeter, and piezo-sensor for acoustic measurements) installed inside the sphere – each DOM acting as an individual, autonomous detection node
- Connection to the rest of the apparatus requires two conductors (+12 V power) and one optical fibre through a single penetrator

DU mechanics

- Mechanical structure of the string is based on two dyneema ropes, anchored on the sea floor and kept taut by a top buoy (plus DOM buoyancy)
 - **Slender and strong arrangement**
 - DOMs keep the correct attitude
 - String dynamics under control
- A backbone (VEOC Vertical Electrical-Optical Cable) connects all DOMs to the DU base module - the VEOC is built on an oil-filled pressure-balanced hose
- DOM collars allow the DOMs to be fixed to the ropes
- Break-out-boxes (BOBs) allow connections of consecutive segments of VEOC and a DOM (or base module) **VEOC**
 - A BOB hosts all needed fibre splices and a DC/DC converter
 - A short cable (BEOC BOB Electrical-Optical Cable) connects the BOB to the DOM penetrator (2 conductors and 1 fiber needed)

DOM-rope interface

rope spreader bar (and clips)

ropes

DU installation

- DU is packed on a launcher vehicle (LOM) and installed on the anchor
- After deployment on sea bed and connection to the infrastructure, unfurling is done by operating a release mechanism (either acoustic or ROV-operable)
- LOM (and acoustic release as well, if applicable) is recovered after unfurling

Deployment campaign of Dec. 2015 (ARCA-DU1)

DU deployment

ROV inspection of an unfurled DU

Phase-1 vs. Phase-2

Phase-1 (ongoing):

- 24 ARCA DUs at KM3NeT-It
- 6 ORCA DUs at KM3NeT-Fr

Phase-2 (coming up possibly soon!):

- 2 ARCA blocks at KM3NeT-It
- 1 ORCA block at KM3NeT-Fr
 (1 block = 115 DUs)

ORCA layout

Phase-1

2 DUs deployed

Infrastructure at KM3NeT-Fr

- Shore station set up
- Long distance cable and Phase-1 node reinstalled (NEW!)
- Status: ready to connection of first DU!

Power hut(s) at La Seyne sur mer

The node ready to board the deployment ship

Overboarding!

Infrastructure at KM3NeT-It

- Shore station set up
- One of the 2 Junction Boxes needed for Phase-1 installed
- Status: 2 DUs in operation

ARCA-DU1 on sea bed (Dec. 2015)

Underwater connection of ARCA-DU1

The shore station at Portopalo di Capo Passero

Junction Box (July 2016)

Preparing to deploy ARCA-DU2 and ARCA-DU3 (May 2016)

Development plan

ARCA-DU3

DU installed in May together with ARCA-DU2

Problem on one DOM noticed at the underwater test prior to unfurling – rest of the DU was operational

BUT... power short detected after unfurling

Symptoms not conclusive for understanding the problems; hence the DU was recovered

Remark: recovery was not a planned option – check the TDR:

Maintenance

Following unfurling no maintenance of detection units is planned. When predicting the global performance of the detector, account must be taken of the probability that parts - storeys or optical modules - will become blind. The power and data network must be designed in such a way that in no case can the failure of a detection unit propagate to another part of the detector.

Hence an extra-effort was needed for a detailed preparation

ARCA-DU3: the story of a summer

- ARCA-DU3 was recovered at end of July (2.5 months after deployment)
- Recovery is performed by pulling up the anchor orientation of the DU monitored during recovery (transponder on HLL on anchor + beacon installed on top buoy)
- First round of tests in Malta, then autopsy at Nikhef

Start of recovery (anchor pulled up)

Beacon installed on top buoy

Recovery of a DOM

Anchor onboard

Outcome of ARCA-DU3 investigations

Failure of ARCA-DU3 was due to a letal combination of factors (each of which possibly not fatal if taken individually) – a detailed report is under finalization (to be submitted to the STAC and RRB next week)

Strong points (confirmed):

DU integration (including fiber treatment at all levels)

Installation (including transportation, unfurling)

Base module

DOMs (minor corrections needed)

Weak points (to be improved):

Design of some parts (mechanical and electronic) of VEOC

Integration and test of VEOC

Minor changes to DOM integration and test

Next:

- Define all needed corrective/preventive actions (as part of all other actions already planned, such as reviews – see next)
- Assess status of already available components (vital input for production of new DUs on a short term, such as ORCA-DU1, and for deciding about the good, old "DU1")
- Assess status of DUs already deployed

Quoted from our action plan: "The approach is that the schedule of next deployment of detection units should not compromise the quality of the detection units"

Selected results from ARCA-DU1&2

Nanobeacon-induced hits in DOMs (light emitted from DOM1 upwards)

Comparison of time offsets determined with different methods

Depth dependence of multiple-hit coincidence rates

A muon track detected by the two DUs

Status & conclusions

- Letter of Intent for ARCA and ORCA published Jan. 2016
- KM3NeT back in the ESFRI roadmap!
- Possibility that funding becomes available soon to extend Phase-1 into Phase-2!
- Finalization of return of experience of ARCA-DU3 and of review of the project needed before launching massive construction of DUs
- Setting up structures which can build DUs at a speed ~2-3 DUs/month (adequate for Phase-1, to be further increased for Phase-2)
- Data taking started (2 DUs) for ARCA at KM3NeT-It!
- Considering when to deploy first ORCA DU at KM3NeT-Fr

