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Event Identification

Method

Distinguish different event types in the detector to give analysis
easy access to signal selection (and bkg suppression). Train
neural network to distinguish events into target classes based on
reconstruction output. Available reconstructions algorithms are
track and single shower.

Target classes:
Track:

starting tracks
through-going tracks
up-going tracks
down-going tracks

Single Cascade
Double Cascade (“Double Bang”)
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Event Identification

Method

Distinguish different event types in the detector to give analysis
easy access to signal selection (and bkg suppression). Train
neural network to distinguish events into target classes based on
reconstruction output. Available reconstructions algorithms are
track and single shower.

For the neural network the scikit-learn package for feature
identification and build with the python theanets packages Training:

Train on 57 high impact features from input reconstructions

Homogenize samples in energy
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Track and single shower identification
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Figure : Identification of nueCC and up-going numuCC events into target
classes; errors are dominated by statistics
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Double shower identification
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Figure : Identification of tau “Double Bang” events into target classes
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Training of neural network for two shower events for tau flight
length ≥ 20 m



Double shower identification
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Figure : Identification of tau “Double
Bang” events into target classes

Performance based on output of
single shower and track recon-
structions
↪→ significant improvement ex-
pected if dedicated two shower
reconstruction is available
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Training of neural network for two shower events for tau flight
length ≥ 20 m



Tau “Double Bang” event
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Tau decays 83 % into electron or hadrons causing a shower
(called “Double Bang”)

At mean life τ the tau lepton flight path for a given energy is:

tau.len = 4.9 m ×
Eτ

100 TeV

nu_vertex tau_decay_vertex

hadronic shower tau shower

tau_length



Tau “Double Bang” event
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Tau flavor reconstruction and identification is highly desirable

Almost no atmospheric background (at least 1-2 orders lower
than other flavors)

Needed for full flavor decomposition of flux

Tau neutrino just recently discovered (2000)

nu_vertex tau_decay_vertex

hadronic shower tau shower

tau_length



Belle Starr: a “Double Bang” Reconstruction

1 Single shower position, direction and energy fit

2 Scan two shower position likelihood L along prefit trajectory

3 Analyze likelihood L landscape using TSpectrum

4 Full phase space fit of two shower position likelihood L

where steps 1 to 3 are used to discriminate events and provide
good starting parameters for step 4
Fitted variables:

two positions and one time
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Likelihood

−logL =
∑
hit

−log
[
P (vertex1) + P (vertex2) + P (bkg)

]
P (vertex1) = P

(
hitir1|vertex1

)
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Figure : Hit time residual for e.m. shower at 100 TeV
Slide 8



Likelihood Scan

The two shower position likelihood is evaluated in 1 m steps along
the prefit trajectory. Prefit performance:

Position resolution: ≈ 2 m
Direction resolution: ≈ 3◦
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(b) Tau decay shower much higher
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Figure : Likelihood scan; 0 is prefit position
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Likelihood Scan
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distance along prefit trajectory [m]
200− 150− 100− 50− 0 50 100 150 200

ne
g.

 lo
g 

lik
el

ih
oo

d

42.4

42.5

42.6

42.7

42.8

42.9

43

43.1

43.2

310×

nu_vertex tau_vertex

(b) Tau decay shower much higher
energy (≥ 98 percent)

Figure : Likelihood scan; 0 is prefit position
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Evaluating Likelihood Scan

Used class for γ spectrum peak finding implemented in TSpectrum:

1 Flip likelihood scan
2 Estimate continuous background
3 Find peaks based on derivative change
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(a) Two showers of similar energies
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(b) Tau decay shower much higher
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Figure : Likelihood scan; 0 is prefit position
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Full Fit of Two Shower likelihood

Method

Select interesting events based on Prefit and Scan parameters
(rec Energy, rec length,. . . ) and fit two shower position likelihood
globally using Scan position as starting parameters

Why not fit the two shower likelihood immediately?

Fit needs good starting parameters

Fit is computationally demanding
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Tau MC

Current MC production:

Events generated with GENHEN v7

Tau lepton decay handled with TAUOLA package

Currently, earth propagation is not yet implemented causing all
tau neutrinos to be absorbed by earth at high energies (although
tau neutrinos can regenerate)
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Position Reconstruction

dst nu shower max to rec_first [m]
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(a) Neutrino shower
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(b) Tau decay shower

Figure : Vertex maximum resolution after scanning and full fit, position
resolution shower mean 1.5 m RMS 1.1 m

What causes the difference in vertex resolution?
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Tau decay shower

π shower length

at 100 TeV π± showers are simulated to be 3.5 m longer than π0

showers
↪→ tau decay of 2 or 3 Pions makes extreme energy distributions
likely (“Enhance” tau flight length)
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Direction resolution

Replace prefit direction with direction from two shower position fit:

tau angular resolution [degree]
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Figure : Direction resolution shower mean 2.5◦ RMS 2.4◦
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Event selection

all log10(E)>4.5

contain
npeaks=1,2

npeaks_sig=1,2

redL<=8.5
nlate_hits<20
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Figure : Selection cuts; Resulting rates for diffuse flux Γ = 2.46;
tau signal are all “Double Bang” events with tau.len ≥ 10 m and double
contained vertices
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Atmospheric Muon suppression

Method

Use the fact that the muon track produces light before and after the
two reconstructed showers!

muon track1st shower light 2nd shower lighttrack light

K40 light
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Atmospheric Muon suppression

Hit Selection

hit.residual(shower|vertex12)≤−20 ns

Four hit coincidence on DOM within 20 ns time window

muon track1st shower light 2nd shower lighttrack light

K40 light

rejected hits
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Atmospheric Muon suppression

n hits not rejected
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Figure : top: distribution of left over hits; bottom: cummulative of top (in
percent)
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Selected tau events

Tau rates after selection per block:
3 PeV cut-off:

Γ = 2.46: 0.37 per year

Γ = 2: 0.44 per year

No cut-off:

Γ = 2: 0.61 per year

IC: 0.51 per 914.1 days
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Summary and Conclusion

Belle Starr:

Robust reconstruction of Double Bang events down to 5 m tau
flight length

Excellent atmospheric muon rejection based on excellent hit
time

Good discriminating tool for all neutrino event types

Event ID:

Already at working stage

Further improvements expected by incorporating Belle Starr
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Event ID parameters

linear fits to ranges of cumulative time residual distributions
with respect to shower or track hypothesis

y-intersect
slope

characterizing values of time residual distributions (width,
mean, ...)

tensor of inertia of light pattern in detector

fraction of hits associated with vertex or track hypothesis

reconstruction values (Vertex, Energy, quality parameters)
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Further muon suppression cut variable
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Figure : top: distribution of left over hits; bottom: cummulative of top (in
percent)
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Backup - MC production details

Production stage:

Program: genhen v7r6

No propagation through the Earth (no regeneration)

Cross-sections and primary interaction: LEPTO on isoscalar
target using CTEQ 6D PDF tables (f77 cern lib table #58 4)

Tau decays: TAUOLA v2.6, 22 possible decay modes [
S.Jadach et al., Comput.Phys.Commun. 64, 275 (1991) ]

Generation spec: E−1.0 if you’re using v7
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Backup - MC production details

Light production stage:

Program: km3mc v5r3

Histogrammed photon distributions based on GEANT 3.21

Tau track treated as minimum ionising particle (short, so
reasonable)

Use ’multi-particle’ approximation: each non-electron/muon
replaced with equivalent electron with scaled energy and
distance to shower maximum

No scaled shape about maximum OR fluctuations from one
shower to another

Work in progress: direct simulations with GEANT 4.10
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