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Introduction - Theory

Primordial Black Holes (PBHs) could have been formed in the early
Universe from gravitational collapse of matter-energy density
fluctuations or cosmic phase transitions with: My, >=M,,,, ,=2x10%kg

Hawking 1974 — black body radiation with a temperature:

T,=M, . /[87M]

Planck

PBH loses its mass due to Hawking radiation:

dM | dt < —a(M) | M*

!

Number of available degrees of freedom (dof)

Evaporation is runaway process
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Introduction - Theory

Radiates all standard model particles (number of degrees of freedom
increases with increasing T,))

 Non-thermal particle spectrum due to the fragmentation of quarks
into hadrons, photons, neutrinos etc. above Ay, ~200 MeV

Final spectrum originates mostly from decay of hadrons

|

Need models to calculate the final spectrum

e e

ATLAS black hole event

/ http://atlas.ch
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Introduction - Theory

 PBH lifetime depends on its initial mass:

T~M>/a(M)

Mpg,<5-10! kg — already evaporated
Mg, ~5-101! kg — final stage of evaporation now

* Comparable with IceCube (1 km?3 of ice) compressed into
sphere with 101> m radius!
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Spectrum

 Standard model of
particle physics (124 dof) <
* Non-charged,

e

[} 28
910
|.u1027

non-rotating black hole 2,

(good approximation) 10°
1024

* Based on MacGibbon &
Webber (Phys. Rev. D,
Vol41, 10, 3052, 1990)

* Y,v,nare of interest
for multimessenger
searches (e.g. AMON)
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Searches for PBH evaporation signal

e Utilize AMON & look for multimessenger bursts from
subthreshold data streams (within some short time interval At
and from the same direction)

* short temporal structure of the anticipated PBH evaporation

signal provides a very low false positive rate for any possible
detection.

e expected number of particle x from a PBH at distance r at the
detector:

N, (AN = : [dt [ dE 4N, (E,t)A(E,0)

1 AN

Spectrum Detector response
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Expectations

— Auger

IceCube

= Fermi LAT
HAWC, 0.6-0.7
HAWC,0.7-0.8
HAWC,0.8-0.9
HAWC, 0.9-1

IIIlI|T|| [T

10 1
Distance(pc)

Number of detected events at each experiment, At=5s
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Expectations

e total number of bursts of size b observed over time t:

n(b,At)= Pp, TV,
4 \

PBH density Effective volume

* Single detector: - above threshold data b>=a

« AMON approach - multiple detectors (i=1, M>=2),
subthreshold data, each detects bursts with size b, >=a::

* Choose the time window that maximizes V 4 while keeping
background rate low
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Sensitivity - HAWC
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V. ¢+ changes with At and b (burst size requirement: f(BG, At))
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Sensitivity - lceCube
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V. ¢+ changes with At and b (burst size requirement: f(BG, At))
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Sensitivity - Auger
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Sensitivity — HAWC+IceCube
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Subtreshold: N >=1, N,>=18, At=10s
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Sensitivity — lceCube + Auger
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Sensitivity — HAWC + Auger
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Expected limits and number of detections

B HAWC+IC
m  HAWC + Auger

B HAWC+IC2v
IceCube + Auger

{ 99.73% limits

2
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EHAWC expected

'no signal limit
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In case that HAWC detects burst(s), multimessenger signal is
needed to probe PBH signature

104 Lo
10°

From 2 to 200 possible coincidences within projected HAWC and
current Milagro limit within a year of joint observation
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Summary

Detection of PBHs would be a scientific breakthrough (Hawking’s
hypothesis of black hole radiation, cosmological models of phase
transitions, physics at the highest energy scale & quantum
gravity).

Final PBH explosion produces jets of particles detectable by HAWC,
IceCube and Pierre Auger

HAWC alone may provide the best limit at very high energies in case
of no bursts. AMON approach is needed in case of burst detection.

With AMON, a distinctive PBH evaporation signature may be
probed by conducting coincidence analysis from a few years
of subthreshold neutrino, gamma-ray and neutron data.
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Expectations

e total number of bursts of size b observed over time t:

n(b,Ar) = PrenTVy
4 N

PBH density Effective volume

V= [dQ[ drr’P(b,N (r,A))
0

* probability of observing a burst of size b within At:

P(b,N )=e "N /b
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Sensitivity

* Single detector: V= L(b-3/2)17°Q
- above threshold 16”3/2 2
data b>=a % )A(E 0)

dEdt

« AMON approach - multiple detectors (i=1, M>=2), each

detects bursts with size b, >=a.: / b

Veﬁ 3/2 Overlapzr(zb 3/2)1_[ HL] (Eli)3/2

b=a =M 1 =M I =M
isM \ i=sM /

-subtreshold data b>d
* Choose the time window that maximizes V 4 while keeping
background rate low
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