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Observing “Points” in the Sky 

 High-Energy Radiation Events 

 Gamma-Rays 

 Cosmic Ray Shower Events 

 Cosmic Neutrinos 

 Celestial Objects 

 Galaxies 

 AGN 

 X-ray Clusters 

 … 

 

Specify distribution of a class of events/objects in the sky. 
 objects in a redshift range, radiation events in an energy bin, etc. 

Inference radiation sources, 

cosmic ray acceleration, 

ray propagation, etc. 

Inference cosmic expansion 

history, large scale structure, 

galaxy formation, etc. 

 

Potential radiation sources! 
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Angular Distribution Methods 

 When point sources cannot be resolved,  

 the angular distribution of observed events approaches 

the angular distribution of sources (messenger-propagated 

and projected) on our sky (full skymap). 

IceCube Astrophysical Neutrinos 

PRL 113 (2014) 101101 

E~30 TeV–2 PeV 
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Distinguishing Dense vs. Sparse 

Dense Distributions, e.g., 

• radio galaxies 

• dark matter annihilation 

All events from different source. 

Sparse Distributions, e.g., 

• active galactic nuclei 

• local extragalactic structure 

More sources with multiple events. 

Francisco-Shu Kitaura et al., MNRAS 427, L35 (2012) 
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Given physical source models, how many events would distinguish them? 

Given N events, what can we infer about the full skymap? 



Angular Clustering of the Source Skymap 
 Positive, real function on the sphere 𝐹 𝒏 . 

 Normalize:  Let 𝑆 𝒏 =
𝐹(𝒏)

𝐹
− 1. 

 

 Normalized spherical transform:  

𝑎 ℓ𝑚 =  𝑑𝒏𝑌ℓ𝑚
∗ (𝒏)𝑆(𝒏) 

 

 Angular power spectrum:   

 

𝐶 ℓ =
1

2ℓ + 1
  𝑎 ℓ𝑚

2

ℓ

𝑚=−ℓ

= 4𝜋 
𝑑𝒏1
4𝜋

𝑑𝒏2
4𝜋

 𝑆 𝒏1 𝑃ℓ 𝒏1 ⋅ 𝒏2  𝑆(𝒏2) 

 

 Angular bispectrum:   

𝐵 ℓ1ℓ2ℓ3 =  
ℓ1 ℓ2 ℓ3
𝑚1 𝑚2 𝑚3

𝑎 ℓ1𝑚1
𝑎 ℓ2𝑚2

𝑎 ℓ3𝑚3

𝑚1,𝑚2,𝑚3
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For cosmic neutrinos, 

𝐹 is the apparent flux 

map of all sources. 



Angular Clustering of Observed Events 

 Differential flux of events 𝐹𝑁 𝒏 =
4𝜋

𝜀
 𝛿(𝒏 − 𝒏𝑖)
𝑁
𝑖=1 . 

 Each term needs weights if exposure 𝜀 is not uniform. 

 

 Normalize: 𝑆𝑁 𝒏 =
4𝜋

𝑁
 𝛿(𝒏 − 𝒏𝑖)
𝑁
𝑖=1 − 1. 

 

 Normalized spherical transform:  

𝑎 ℓ𝑚,𝑁 =
4𝜋

𝑁
 𝑌ℓ𝑚

∗ (𝒏𝑖)

𝑁

𝑖=1

 

 

 Angular power spectrum of 𝑁 events:   

 

𝐶 ℓ,𝑁 =
4𝜋

𝑁2  𝑃ℓ(𝒏𝑖 ⋅ 𝒏𝑗)

𝑁

𝑗=1

𝑁

𝑖=1
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Statistical properties 

of this observable tell 

us about the sources. 



The Problem 

 Let 𝐶 ℓ be the fluctuation 

(normalized) APS of a skymap– 

what we are trying to measure. 
 

 Receive 𝑁 events at random, 

weighted by the sky map. 
 

 Assume full sky observations with 

uniform exposure. 

 What is the angular power spectrum of the 𝑁 events, 𝐶 ℓ,𝑁, 

from a full sky map with distribution 𝐶 ℓ? 
 mean of 𝐶 ℓ,𝑁? 

 variance of 𝐶 ℓ,𝑁? 

A hypothetical projected skymap 

of sources. 
The 2 micron sky courtesy of the 2MASS 

collaboration, http://www.ipac.caltech.edu/2mass/. 
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Simplest Model: Poisson Point Process 

 Only 2 assumptions (need experimental justification): 

1. The skymap of sources is stationary over the exp. lifetime. 

Neglect transients.  Their effect will depend on the timescales involved. 

 

2. The observed events are independent. 

The probability of observing an event at a given position depends on the 

source skymap, but not on previous events already observed. 

The statistics of the 

observable 𝐶 ℓ,𝑁 are 

exactly solvable in 

this case. 
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Statistical Mean: Events Relate to Sources! 

 The average measurement of 𝐶 ℓ,𝑁 from a random sample: 
 

𝐶 ℓ,𝑁 =
4𝜋

𝑁
+ 1 −

1

𝑁
𝐶 ℓ 

 
 Angular power spectrum of events is a biased estimator of the 

source distribution. 

 

 Therefore, an unbiased estimator 𝐶  ℓ,𝑁 with 𝐶  ℓ,𝑁 = 𝐶 ℓ: 
 

𝐶  ℓ,𝑁 =
1

1 −
1
𝑁

𝐶 ℓ,𝑁 −
4𝜋

𝑁
=

4𝜋

𝑁(𝑁 − 1)
  𝑃ℓ(𝒏𝑖 ⋅ 𝒏𝑗)

𝑗≠𝑖𝑖

 

 

 In agreement with other existing methods! 

𝐶 ℓ is now APS of 

source skymap, 

convolved with 

instrument PSF. 
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Exact Statistical Covariance of 𝐶  ℓ,𝑁 

∁ov 𝐶  ℓ1,𝑁, 𝐶
  
ℓ2,𝑁 =

(4𝜋)2

𝑁(𝑁 − 1)
 2

𝛿ℓ1,ℓ2
2ℓ1 + 1

+ 𝐶 ℓ1ℓ2
(2)

−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
 

                                   + 4 𝑁 − 2  
𝛿ℓ1,ℓ2
2ℓ1 + 1

𝐶 ℓ1
4𝜋

+
𝐶 ℓ1ℓ2

3

4𝜋
−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
   

 

𝐶 ℓ1ℓ2
(2)

=  
2ℓ′ + 1

4𝜋
ℓ1 ℓ2 ℓ′
0 0 0

2

𝐶 ℓ′

ℓ1+ℓ2

ℓ′=|ℓ1−ℓ2|

 

 

𝐶 ℓ1ℓ2
3

=
1

(2ℓ1 + 1)(2ℓ2 + 1)
 

2ℓ′ + 1

4𝜋

ℓ1+ℓ2

ℓ′=|ℓ1−ℓ2|

ℓ1 ℓ2 ℓ′
0 0 0

𝐵 ℓ1ℓ2ℓ′ 
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Analytic Work Generated  

Higher Order Angular Spectra 

𝐶 ℓ1ℓ2
(2)

=  
2ℓ′ + 1

4𝜋
ℓ1 ℓ2 ℓ′
0 0 0

2

𝐶 ℓ′

ℓ1+ℓ2

ℓ′=|ℓ1−ℓ2|

 

 

𝐶 ℓ1ℓ2
3

=
1

(2ℓ1 + 1)(2ℓ2 + 1)
 

2ℓ′ + 1

4𝜋

ℓ1+ℓ2

ℓ′=|ℓ1−ℓ2|

ℓ1 ℓ2 ℓ′
0 0 0

𝐵 ℓ1ℓ2ℓ′ 

 

 

𝐶 ℓ1ℓ2
(4)

= 𝐶 ℓ1𝐶
 
ℓ2 

I know two ways to see that 𝐶 ℓ is the first order angular spectrum, 

and that these comprise the complete set of 2nd order spectra. 
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Higher Order Spectra: Tensor Picture 

 First and Second Rank Spherical Harmonic Transforms of S: 
 

𝑎 ℓ𝑚 =  𝑑𝒏 𝑌ℓ𝑚
∗ 𝒏  𝑆 𝒏 ,      𝑎 ℓ1𝑚1ℓ2𝑚2

=  𝑑𝒏𝑌ℓ1𝑚1

∗ 𝒏 𝑌ℓ2𝑚2

∗ 𝒏  𝑆 𝒏  

 Raised Azimuthal Indices generated by 𝑌ℓ
 𝑚 = (−1)𝑚 𝑌ℓ,−𝑚

∗ : 
 

𝑎 ℓ1𝑚1ℓ1

                𝑚2 =  𝑑𝒏𝑌ℓ𝑚1

∗ 𝒏 𝑌ℓ
 𝑚2 𝒏  𝑆 𝒏 = (−1)𝑚2  𝑎 ℓ1,𝑚1,ℓ2,−𝑚2

 

 Create rank 0 (rotation invariant) tensors by contracting 

azimuthal indices: 
 

𝐶 ℓ =
1

2ℓ + 1
 𝑎 ℓ

  𝑚𝑎 ℓ𝑚

ℓ

𝑚=−ℓ
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Higher Order Spectra: Tensor Picture 

 All possible rank 0 tensors from rank 1 and 2 transforms. 
 

𝐶 ℓ1ℓ2
(2)

=
1

(2ℓ1 + 1)(2ℓ2 + 1)
 𝑎 ℓ1     ℓ2

    𝑚1   𝑚2  𝑎 ℓ1𝑚1ℓ2𝑚2

𝑚1,𝑚2

 

 

𝐶 ℓ1ℓ2
(3)

=
1

(2ℓ1 + 1)(2ℓ2 + 1)
 𝑎 ℓ1     ℓ2

    𝑚1   𝑚2𝑎 ℓ1𝑚1
𝑎 ℓ2𝑚2

𝑚1,𝑚2

 

 

𝐶 ℓ1ℓ2
(4)

= 𝐶 ℓ1𝐶
 
ℓ2

=
1

(2ℓ1 + 1)(2ℓ2 + 1)
 𝑎 ℓ1

    𝑚1𝑎 ℓ1𝑚1
𝑎 ℓ2
    𝑚2𝑎 ℓ2𝑚2

𝑚1,𝑚2
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 Use the Spherical Harmonic Addition Theorem: 

 
1

2ℓ + 1
 𝑌ℓ

 𝑚 𝒏1  𝑌ℓ𝑚
∗ 𝒏2

𝑚

=
1

4𝜋
𝑃ℓ(𝒏1 ⋅ 𝒏2) 

 

 Angular Power Spectrum is like 2 field configurations 

connected by a “correlator”. 

 

𝐶 ℓ = 4𝜋  
𝑑𝒏1

4𝜋

𝑑𝒏2

4𝜋
 𝑆 𝒏1 𝑃ℓ 𝒏1 ⋅ 𝒏2  𝑆(𝒏2)  

Higher Order Spectra: Field Theory Pic. 

𝒏1 𝒏2 
𝜋
ℓ 
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Higher Order Spectra: Field Theory Pic. 

 All possible diagrams with 2 correlators. 

 

𝐶 ℓ1ℓ2
(2)

=  
𝑑𝒏1

4𝜋

𝑑𝒏2

4𝜋
 𝑆 𝒏1 𝑃ℓ𝟏 𝒏1 ⋅ 𝒏2 𝑃ℓ𝟐 𝒏1 ⋅ 𝒏2 𝑆(𝒏2)  

 

 

𝐶 ℓ1ℓ2
(3)

= 4𝜋  
𝑑𝒏1

4𝜋

𝑑𝒏2

4𝜋

𝑑𝒏3

4𝜋
 𝑆 𝒏1 𝑃ℓ1 𝒏1 ⋅ 𝒏2  𝑆(𝒏2)𝑃ℓ2 𝒏2 ⋅ 𝒏3  𝑆(𝒏3)  

 

 

𝐶 ℓ1ℓ2
(4)

= 𝐶 ℓ1𝐶
 
ℓ2  

“Composite Angular Power Spectrum” 

“Open Angular Bispectrum” 

“Disjoint Angular Trispectrum” 
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Unbiased Estimators from 𝑁 Events 

𝐶  ℓ1ℓ2,𝑁
(2)

=
1

𝑁(𝑁 − 1)
  𝑃ℓ1(𝒏𝑖1 ⋅ 𝒏𝑖2)𝑃ℓ2(𝒏𝑖1 ⋅ 𝒏𝑖2)

𝑖2≠𝑖1𝑖1

−
𝛿ℓ1ℓ2
2ℓ1 + 1

    

 

𝐶  ℓ1ℓ2,𝑁
(3)

=
4𝜋

𝑁(𝑁 − 1)(𝑁 − 2)
   𝑃ℓ1(𝒏𝑖1 ⋅ 𝒏𝑖2)𝑃ℓ2(𝒏𝑖2 ⋅ 𝒏𝑖3)

𝑖3≠𝑖2
𝑖3≠𝑖1

𝑖2≠𝑖1𝑖1

 

−
𝛿ℓ1ℓ2
2ℓ1 + 1

𝐶  ℓ1,𝑁                                                                

 

𝐶  ℓ1ℓ2,𝑁
(4)

=
(4𝜋)2

𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
                                                                 

                                             𝑃ℓ1(𝒏𝑖1 ⋅ 𝒏𝑖2)𝑃ℓ2(𝒏𝑖3 ⋅ 𝒏𝑖4)
𝑖4≠𝑖3
𝑖4≠𝑖2
𝑖4≠𝑖1

𝑖3≠𝑖2
𝑖3≠𝑖1

𝑖2≠𝑖1𝑖1
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∁ov 𝐶  ℓ1,𝑁, 𝐶
  
ℓ2,𝑁 = 4𝜋 2  

2

𝑁2

𝛿ℓ1,ℓ2
2ℓ1 + 1

+ 𝐶 ℓ1ℓ2
(2)

−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
 

                                         + 
4

𝑁
 
𝛿ℓ1,ℓ2
2ℓ1 + 1

𝐶 ℓ1
4𝜋

+
𝐶 ℓ1ℓ2

3

4𝜋
−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
   

 If higher-order spectra are neglected: 

 the covariance is diagonal—each multipole measurement is 

independent. 

 call this 𝐶ℓ-only statistical uncertainty. 

 

𝒱ar 𝐶  ℓ,𝑁 =
2

2ℓ + 1

4𝜋

𝑁

2

+ 2
4𝜋

𝑁
𝐶 ℓ  

 

Statistical Covariance of 𝐶  ℓ,𝑁 (𝑁 ≫ 1) 
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(𝐶ℓ-only) 



𝒱ar 𝐶  ℓ,𝑁 =
2

2ℓ + 1

4𝜋

𝑁

2

+ 2
4𝜋

𝑁
𝐶 ℓ  

 

Good Agreement with WMAP Data 
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(𝐶ℓ-only) 

WMAP Collaboration, 

Astrophys.J.Suppl. 208 (2013) 20 

& PTEP 2014 (2014) 6, 06B102 



The New Error Terms Can Be Important 
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 Example uncertainty evolution at ℓ = 500 with 𝐶 ℓ = 10−5 sr. 

 

 But is this a real effect? Does a distribution with bispectrum have a 

different power spectrum uncertainty than one without bispectrum? 

SC, MNRAS 448 (2015) 2854 



Test with Monte-Carlo Sampling 
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𝐶 ℓ = (0.0544 sr) 𝛿ℓ,12 𝐶 ℓ = (0.0544 sr) 𝛿ℓ,12 

𝐶 ℓℓ
(3)

= 0 𝐶 ℓℓ
(3)

= −0.000413 sr  𝛿ℓ,12 

SC, MNRAS 448 (2015) 2854 



𝐶  ℓ,𝑁 Distribution of 10 000 Samplings 
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 Low counts gives very wide distribution. Shot noise subtraction can give 

negative power spectrum estimates. 

 At high counts, the distribution becomes narrow, and the distribution with 

negative bispectrum is visibly narrower. 

SC, MNRAS 448 (2015) 2854 



𝜎
𝐶  ℓ,𝑁

 Distribution of 10 000 Samplings 
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 The negative bispectrum does indeed appear to lower the variance of the 

power spectrum measurement. 

 Even the distribution without bispectrum is affected by the other higher-

order spectra, but those effects are small and unresolved in this example. 

𝑆 NB 𝑆 B 
𝐶ℓ-only 

Full Estimator 

SC, MNRAS 448 (2015) 2854 



Conclusions 

 A new analytic error analysis of angular power spectra of points is 
presented. This is a natural analysis to carry out with IceCube data. 

 

 The unbiased estimator of the source’s angular power spectrum is in 
agreement with usual estimates. 

 

 The uncertainty has the usual shot noise and first order signal 
contributions, but gives new higher order anisotropy contributions. 

 

 These results do not assume Gaussianity of signal/sources. 

 Results apply to any event distribution from stationary sources. 

 

 These results allow for realistic estimates of the data requirements 
for distinguishing source models through angular distributions. 
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Extra Slides 
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A Popular Measure of Angular Distribution: 

The Angular Power Spectrum 

Intensity Angular Power Spectrum 𝐶ℓ 

𝐼 𝐸, 𝒏 − 𝐼(𝐸) = 𝑎ℓ𝑚(𝐸)𝑌ℓ
𝑚(𝒏)

ℓ,𝑚

        𝐶ℓ(𝐸) =
1

2ℓ + 1
 𝑎ℓ𝑚(𝐸)

2

𝑚

 

 Absolute intensity fluctuations. 

 Monotonically increases as sources are added. 
 

Fluctuation Angular Power Spectrum 𝐶ℓ  
𝐼 𝐸, 𝒏 − 𝐼(𝐸)

𝐼(𝐸)
= 𝑎 ℓ𝑚(𝐸)𝑌ℓ

𝑚(𝒏)

ℓ,𝑚

      𝐶ℓ (𝐸) =
1

2ℓ + 1
 𝑎 ℓ𝑚(𝐸)

2

𝑚

 

 Relative intensity fluctuations. 

 Constant for universal spectrum sources at fixed redshift. 
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Special Case: Pure Isotropic Source 

 Receive N events at uniformly random positions. 

 

𝑎 ℓ𝑚,𝑁 =
4𝜋

𝑁
 𝑌ℓ𝑚

∗ (𝑛 𝑖)

𝑁

𝑖=1

            𝐶 ℓ,𝑁 =
1

2ℓ + 1
 𝑎 ℓ𝑚,𝑁

2
ℓ

𝑚=−ℓ

 

 

𝐶 ℓ,𝑁 = 𝐶 𝑃,𝑁 =
4𝜋

𝑁
 

  

𝜎𝐶 ℓ,𝑁 =
2

2ℓ + 1

4𝜋

𝑁
 

Shot noise/Poisson noise. 
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Error Estimate with Anisotropic Source 

 Lesson from CMB: Cosmic Variance 

 

 The dominant statistical uncertainty in CMB anisotropy. 

 Cosmic Variance ⟺ Unknown Initial Conditions 

 

 Assuming the signal is randomly Gaussian distributed, 
then our estimator for 𝐶 ℓ is the maximum likelihood 
estimator with uncertainty: 

 

𝜎𝐶 ℓ =
2

2ℓ + 1
𝐶 ℓ 
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“Rule of Thumb” Stat. Uncertainty Est. 

 Angular power spectrum from “events”. 

 Assume sources are approximately Gaussian distributed. 

 Shot noise is a bias to be subtracted from estimator. 
 

𝐶  ℓ,𝑁 =
1

2ℓ + 1
 

4𝜋

𝑁
 𝑌ℓ𝑚

∗ (𝒏𝑖)

𝑁

𝑖=1

2
ℓ

𝑚=−ℓ

−
4𝜋

𝑁
 

 

𝜎
𝐶  ℓ,𝑁

=
2

2ℓ + 1

4𝜋

𝑁
+ 𝐶 ℓ  

 

 The goal is to check these standard estimates. 

Knox, PRD52, 4307 (1995) 
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Improving Our Understanding of the  

Statistical Variance 

 Some conceptual difficulties with using the cosmic 

variance as we did. 

 Cosmic variance is a theoretical error, which applies when 

making physical inferences about our models based on data. 

 The angular power spectrum measurement should be able to 

be made independently of any model. 

 We should not need to assume the signal is Gaussian-

distributed. 

 

 Investigations have led to a new formula for the model-

independent statistical variance of the angular power 

spectrum of events from a background distribution. 
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Strategy for Calculation 

Consider each event  

observed at position 𝑛 ′ but  

originated from position 𝑛 . 

 

 

1) For fixed source positions 𝑛 𝑖, average over event 

position 𝑛 𝑖
′
, via the instrument point spread function. 

         Result of this step: what is being measured is the sky map convolved with the instrument PSF. 

2) Average the N events source positions, weighted by the 

skymap. 
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Compare to Gaussian Cosmic Variance 
 Old method with shot noise + Gaussian cosmic variance: 
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 New variance formula: 
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 The new formula agrees surprisingly well with the traditional 
estimate, with dominant contributions for a weak signal in precise 
agreement. 

 New terms important at large 𝑁. Note no 𝑁-independent terms! 
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Gaussian-Distributed Sky Map 

 Our results do not assume Gaussianity. 

 If the sky map is Gaussian, then higher order spectra are 

determined from 𝐶 ℓ as follows: 
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Consequences of Findings 

 Experiments using Monte Carlo to estimate error already 
take into account these new effects automatically. 

 Experiments using Gaussian Cosmic Variance may be 
missing higher orders in the uncertainty of angular power. 

 Fermi-LAT anisotropy measurement should check estimators 
of these terms for possible corrections to their uncertainties. 

 Small 𝜒2 suggests either their errors should be smaller 
(possibly due to some more subtle effects) or energy bins are 
somehow correlated. 

 This error analysis must also take into account effects of: 

 non-uniform exposure, 

 sky masking, 

 other observational bias or instrumental effects. 
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