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Introduction

@ Quantum particles should be treated as Wave Packets (WPs).
o Finite size of the WP introduces intrinsic momentum uncertainty.
o Non-zero probability of detecting the neutrino off its classical path.
o A0~ Apy/po~1/2E,a
@ Current Monte Carlo simulations assume Point-like Particles (PPs)
o In particular, "classical” pion decay in lab frame is used:
3
dP 2 (1 + tan? 9) 2
dQ 7 (1++2tan26)’

(1- mfb/l\/lfr) YM
1+~2tan?d

E.(0) ~

@ The above describe the MEAN PATH and energy of a neutrino WP.
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Motivation & Approach

Motivation:

@ Focus v.s. Defocus of the neutrino beam. Does WP treatment
change the prediction of experimental observables?

@ Is it possible to determine the WP size from accelerator experiments?
Approach:

@ We assume 3D and Massless Gaussian WP parameterized by a; and

a;. lts momentum distribution is assumed to be sharp.
@ We derive the probability ©(#’) of detecting the neutrino at an angle

72

0’ relative to its classical path. ©(0') ~ exp{—z_(2giat)_2}.

e With ©(0’), we derive the probability distribution as a function of
neutrino energy and observation angle relative to the pion’'s mean
trajectory.

@ The new distribution is applied to calculate experimental spectrum.
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Modified Probability Distribution

@ Due to WP spreading, the probability of detecting the neutrino within
d€g is an incoherent sum over different emission directions.

cos ) dP ,
ondE /dgb dE, 6(9 v)

@ WP and PP treatments are equwalent if (2E,a2;)"t <71
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Application to Accelerator Experiments

@ For demonstration purpose, we consider secondary beam (7™ only)
profiles and near detector geometries similar to the MINOS and

NOvA experiments.
@ Geometric variables in the numerical calculation. The azimuthal
angles are not displayed.
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Application to Accelerator Experiments

o Predicted v, charged current spectrum in the near detectors of (a)
on-axis and (b) off-axis experiments.

e MC simulation with uncertainty from PRL 106, 181801 (2011) is
included in (a) for comparison. Caution: no statistical interpretation is
intended here!

o WP spreading shifts the spectrum toward low (high) energy in the
on-axis (off-axis) experiment.
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Application to Accelerator Experiments

@ Nwp/Npp as a function of a;.
e The number is counted regardless of neutrino energy.
e Assume no neutrino oscillations in the far detector calculation.

o Almost the same ratio in both near and far detectors.
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@ With a simple Gaussian neutrino WP emerging from pion decay in
flight, we derive the modified probability distribution which can be
easily included in Monte Carlo simulations.

@ WP spreading shifts neutrino spectrum in the opposite directions for
on/off-axis experiments.

@ Null observation of the spectral shift in the near detector could place
a lower bound on ay.
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Thank You!
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Massless 3D Gaussian WP

@ At t =0, the initial WP can be expressed as

1 P2 z°
V(F,0) = ————5exp (— - + Ipoz>
(27r)3/4 atall/2 4a;  4a 2

@ The probability ©(0") can be found by two equivalent methods:

@ By solving the wave equation, W(7, ¢t > 0) turns out to be a spherical
wave front with constant radial width a; and an asymptotically constant
angular distribution. The wave front moves at the speed of light.

@ Alternatively, one can analyze the momentum distribution W(B) of the
initial WP. The normalization condition of \Tl(ﬁ) ©(0') suggests.

1- é;}w - [a / P48 55 (1)

6(9’)
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Spectral Shift & Adjusted Beam Normalization

@ Define detector position according to the characteristic angle of pion
decay.
@ Assume collinear trajectories for all pions for simplicity.
o At inside (outside) position, the detector sees less (more) number of
neutrinos. The measured neutrinos are less (more) energetic.
e An on-axis detector is always at the inside position.
e An off-axis detector can be either "inside” or "outside”, depending on
the pion energy.
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