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The multi-messenger approach.

> 3 messengers to study the non-thermal universe.
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The multi-messenger approach.

> Gamma-ray and neutrino production in hadronuclear interactions.
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Hadronuclear interactions.

> Interactions of high-energy nuclei with 
target gas.

> ! / " spectrum follows spectrum of nuclei.
> Simple relative " / ! yields.
>  Well-known example: GeV Galactic 

diffuse emission
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GeV diffuse emission dominantly 
produced in hadronuclear 
interactions.
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The multi-messenger approach.

> Photo-hadronic interactions in radiation field targets.
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Photo-hadronic interactions.

> Dominated by resonances in the 
cross section.

> ! and " spectra depend on target 
photon fields.

> High energy threshold for 
process: Ep ≳ 7 × 1016 eV2 / E"

> Different yields of ! and anti-!.
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" yields for 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The multi-messenger approach.

> Many processes without ! production.
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Propagation of high-energy "-rays.
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Propagation of high-energy !-rays.
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Propagation of high-energy !-rays.
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The !-ray horizon.
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The !-ray horizon.
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The gamma-ray and the neutrino domain.
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Learned & Mannheim, 2000

 !-domain 

IceCube: "-sky survey

Fermi LAT: !-sky survey
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The gamma-ray and the neutrino domain.
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Learned & Mannheim, 2000

 !-domain 

IceCube: "-sky survey

Fermi LAT: !-sky survey

Precision measurements 
of (mostly) local sources. 
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The GeV gamma-ray sky.

> More than 3000 sources.
> Many Galactic and extragalactic 

source populations.
> Galactic & extragalactic diffuse 

emission.
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Fermi LAT, 4-year sky map, E > 1 GeV
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The neutrino sky.
> Locations of E > 30 TeV 

events compatible with 
isotropic distribution.

> Spectrum can be 
described by a single 
power law.

> Measured flavor ratio as 
expected from astro-
physical production. 
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Ahlers & Murase, 2014

“Global” fit of several 
IceCube datasets
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Neutrinos and gamma rays from the Galaxy.
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Is there a Galactic component in the astrophysical neutrino flux ? 

Do we see the signs of Galactic cosmic-ray acceleration ?
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Galactic !-ray and neutrino emission.

> Most Galactic sources are expected 
to be transparent to !-rays.

> Assuming all emission to be hadro-
nuclear gives upper limit on the  
" - flux.

> " - flux predictions from emission 
model based on broadband SED.
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Kappes et al., 2006

Mandelartz & Tjus, 2013

expected "

observed !
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Neutrino flux upper limits from IceCube data.

> IceCube is not sensitive enough yet 
to observe individual Galactic 
sources.

> Expected spectral cutoffs at TeV 
energies for Galactic sources limit 
sensitivity.
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IceCube flux upper limits for 
generic sources with power-law 
spectrum of index -2.

Upper flux limits for specific 
source models.

IceCube, arXiv:1503.0098
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> Search for possible counterparts 
in TeV gamma-ray source catalog.

> IceCube shower events have  
10º — 15º angular resolution.

> Compare power emitted in !-rays 
to power in neutrinos.

> Several Blazars and Galactic 
sources found as potential TeV 
counterparts to neutrino sources.
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The origin of the astrophysical neutrino flux.

Padovani and Resconi, MNRAS, 2014
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Neutrinos from CR interactions in the Galaxy ?
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Average Galactic γ-ray 
intensity from CR interactions 
with interstellar gas 
(π0-decay only) 

> Additional contributions from 
hard Galactic sources expected!

IceCube preliminary
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The extragalactic gamma-ray and neutrino sky.
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Fermi LAT, 4-year sky map, E > 1 GeV

What ist the connection 
to ultra-high-energy 

cosmic rays ?

Can we identify the 
populations producing 

the neutrinos far from the 
Galactic plane ?
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The 3rd LAT catalog of Active Galactic Nuclei (AGN)

> 1591 high-latitude LAT 
sources associated with 
AGN
▪ 1559 associated with Blazars
▪ 32 associated with misaligned 

radio Galaxies

> Blazars are the dominant 
extragalactic !-ray source 
population.

> Large fraction of unidentified 
sources are likely Blazars.
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|b|>10

Benoit Lott, 5th Fermi Symp., Nagoya, 2014 
arXiv:1501.06054
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Search for correlation of " to the sample of Fermi Blazars.

> Most of the !-ray emission from Blazars is from the individually detected Fermi 
LAT sources.

> Search for neutrino emission spatially coincident with 2LAC Blazar sample.
> 3 years of IceCube data used (2009-2012).

20

arXiv:1502.03104
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Limit on neutrino emission from Fermi Blazars.

> Less than 20% of the 
observed diffuse flux is 
produced by the Fermi LAT 
detected Blazars (based on 
2LAC catalog). 

21

arXiv:1502.03104
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Star-forming / starburst galaxies.

> 4 starburst galaxies 
detected with the LAT

> 4 local “normal” 
galaxies detected.
▪ Andromeda, LMC, 

SMC & Milky Way

> Weak gamma-ray 
sources, but very 
abundant in the 
universe.

22

M82

Andromeda

“normal” star-formation rate extreme star-formation rate 
“starburst”

M82 - E>100 MeV  
(Test Statistic)

Andromeda - E>100 MeV  
(LAT counts)

Abdo et al., 2010Abdo et al., 2010
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The isotropic diffuse gamma-ray background (IGRB).

> Extragalactic sources too weak to be detected form an isotropic background.
> Emission from undetected sources can be many times stronger than from 

detected ones if:
▪ Source density is high, but their luminosity low.
▪ Instrument sensitivity is low.

23
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The isotropic diffuse gamma-ray background (IGRB).

> Extragalactic sources too weak to be detected form an isotropic background.
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The origin of the IGRB in the LAT energy range.

24

Undetected sources Diffuse processes
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Why is this important ?
! The Extragalactic Gamma-ray Background may encrypt the signature of the

most powerful processes in astrophysics
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Blazars
▪ Dominant class of LAT extra-

galactic sources. 

Radio galaxies
▪ 32 sources resolved in 3LAC. 

Star-forming galaxies
▪ Some galaxies outside the 

local group resolved by LAT. 

GRBs + High-latitude 
pulsars
▪ Only small contributions 

expected. 

Intergalactic shocks
▪ produced in galaxy cluster 

mergers

Dark matter annihilation
▪ Potential signal dependent on 

nature of DM.

Interactions of UHE cosmic 
rays with the EBL
▪ Strongly dependent on evolution 

of UHECR sources..
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LAT IGRB and EGB measurements

> Measured by Fermi LAT between 100 MeV and 820 GeV.
> Large systematic uncertainties from foreground subtraction.
> Total extragalactic gamma-ray background (EGB) = IGRB + resolved sources.
> EGB is independent of the sensitivity of the instrument.

25

Ackermann et al., 2014, arXiv:1410.3696
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Neutrinos and !-rays from star-forming galaxies.
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Neutrinos and !-rays from star forming Galaxies.

> If extragalactic p-p 
collisions produce the 
observed ": 
➔ hard "-spectrum 
below 10 TeV needed.

> Difficult to explain 
spectra considerably 
harder than Γ~2 in  
p-p scenario.

> First hint at p-! 
interactions being the 
dominant neutrino 
production mechanism?

> Or maybe that part of the 
signal is Galactic ?

27

"

!

Murase, Ahlers & Lacki, 2013 
updated to new IGRB measurement (Ackermann et al. 2015)  

Similar constraints would apply to 
" emission from galaxy clusters
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Source population contributions to the EGB.

> Observed extragalactic LAT source populations can account for the EGB 
intensity.

> Blazars dominate the EGB, but significant uncertainties in modeling contributions.

28

Ajello et al., ApJL, 2015 
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Blazars revisited…

29

Upper limit 
on neutrino flux 
from Fermi Blazars 

IceCube preliminary

Intrinsic Blazar spectrum

After EBL absorption

> Upper limit close to a naive 
extrapolation of the Blazar !-ray 
spectrum.
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Gamma-ray bursts.

> GRBs have been prime candidates for ultra-high-
energy CR production.

> Search for coincidence between GRB and 
neutrino emission.

> So far no coincidence detected.
> Sophisticated modeling attempts to predict the 

connection between neutrino and gamma-ray 
emission. 

30

νµ
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p

watch the talk by W. Winter!
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Summary

> Neutrinos and gamma rays are indeed complementary messengers. They probe
▪ different high-energy interactions.
▪ different energy regimes.
▪ different distance regimes.

> The correlations between the two messengers can be used to understand the high-
energy emission of various source populations better.
▪ Galactic high-energy ! sources compatible with "-ray data, but no identification yet.
▪ LAT Blazars contribute less than 20% to the diffuse !-flux.
▪ Extragalactic p-p scenarios (like star-forming galaxies) problematic.
▪ No coincidence with GRBs detected yet.

> New instruments proposed  
promise a bright future.

31

ASTROGAM

CTA

IceCube-Gen2
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Backup

32
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Cosmogenic neutrinos

> Ultra-high-energy cosmic 
rays interact with the EBL 
during propagation.

> Neutrino/Gamma 
production via pγ-
interactions

> Reprocessing of gamma 
rays to GeV energies

33

Photo-Pion Production
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Multi-messenger constraints on UHECR properties.

34Sigl and v.Vliet, arXiv:1407.6577

> CR, neutrino and gamma-ray spectrum from propagation code.
> Cosmological evolution of sources corresponds to GRB evolution.
> Proton sources.

Fermi EGB

IceCube  
high-energy-ν  
limits

Auger ν limits

Auger  
CR flux

IceCube  
astrophysical 
flux
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Multi-messenger constraints on UHECR properties.

> CR, neutrino and gamma-ray spectrum from propagation code.
> Cosmological evolution of sources corresponds to FR-II galaxy evolution.
> Proton sources.

35
Sigl and v.Vliet, arXiv:1407.6577

Fermi EGB
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high-energy-ν  
limits

Auger ν limits

Auger  
CR flux

IceCube  
astrophysical 
flux


