
IceCube
South Pole Neutrino Observatory

Measurement of Muon Neutrino 
Disappearance with IceCube/DeepCore

1

Matt Dunkman 
for the IceCube Collaboration 
!
!
!
!
IPA 2015 
Madison, WI 
May 5, 2015



44&ins/tu/ons/&12&countries&/&~&310&authors&

April&2015&

2M. Dunkman, IceCube Collaboration; May 2015



M. Dunkman, IceCube Collaboration; May 2015

DeepCore
•Denser subarray 
‣ 7m vertical PMT separation 
‣ located in deep, clear ice 
‣ threshold Eν≈10 GeV 

•Atmospheric muon rates 
are 106 higher than 
neutrino rates at trigger 
‣ use IceCube as active veto
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IceCube footprint

DeepCore 
fiducial volume

40–70 m

125 m



Atmospheric Neutrinos
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IceCube has high flux, primarily νμ!
Interactions are almost always DIS



Atmospheric Oscillations
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cos(θν) = –1



Atmospheric Oscillations
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cos(θν) = –1   cos(θν) ≤ –0.9
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“Typical” Signal Event
•MC True information: 
‣ 27 GeV νμ (CC DIS) 
‣ 15 GeV outgoing muon 

• Seen by a few strings 
‣ time shown by color  

(light to dark) 
‣ charge shown by size 

•Reconstruction shown in red 
‣ muon travels from sphere to 

end of arrow 
‣ 25 GeV reconstructed energy
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“Golden Sample” Event Selection
• Signal: νμ with Eν≤50 GeV from  
charged current [CC] interactions 

•Active IceCube Veto 
‣ reject events with ≥ 2 causally connected 

photons in veto region 
‣ these are tagged as “atmospheric muons” 

and used in background estimates 

•Require many direct photons from muon† 
‣ used to distinguish tracks from cascades 
‣ improves performance of reconstructions
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Atmospheric Muons

Dark Noise

Neutrino-induced 
tracks

Neutrino-induced 
cascades

†Developed by Juan-Pablo Yáñez in collaboration with J. Brunner (Astropart.Phys.34:652-662,2011)

[IceCube, Phys. Rev. D 91, 072004 (2015)]
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“Golden Sample” Oscillation Signature

•Golden events only 
‣ up-going, track-like 
‣ 5174 events in 3 years 

•Best fit to data from a 2D 
likelihood analysis 
‣ 8 bins in log(E) 
‣ 8 bins in cos(θ) 
‣ horizontal bin fixed for normalization 

‣ !2/dof = 54.9/56
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Projection in L/E (not used in analysis)

[IceCube, Phys. Rev. D 91, 072004 (2015)]
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Current νμ Disappearance Results

•Golden events only 
‣ up-going, track-like 
‣ 5174 events in 3 years 

•Comparable with 
leading experimental 
measurements
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sin2 (✓23) 0.53+0.09
�0.12

�m2
32

�
10�3eV2

�
2.72+0.19

�0.20

Best ± 68% CL

NH

[IceCube, Phys. Rev. D 91, 072004 (2015)]
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How will we improve our result?
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•Get more high quality events 
‣ new reconstruction allows 10x statistics 

without degradation of resolutions 

•Maximize the control sample 
‣ keep cascade-like events 
‣ keep down-going region 
‣ improves constraints on systematics 

•Keep the good 
‣ use same data-driven approach for 

background estimation
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Estimated Sensitivity of New Analysis

•Fit value agrees extremely well with injected value 
‣ this includes all systematics 
‣ also good agreement in all systematic/nuisance parameters
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Estimated Sensitivity of New Analysis

•Fit value agrees extremely well with injected value 
‣ this includes all systematics 
‣ also good agreement in all systematic/nuisance parameters
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Comparing the Estimated Sensitivity

• Significant step forward from PRD result 
‣ major increase in mass splitting precision
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Summary
• IceCube/DeepCore sees very many neutrino events 
‣ with three years of detector livetime, around 105 neutrino 

events pass low-level vetoes 
‣ current analysis uses subset of 5000 good neutrino-like events 

•Current results are comparable with other experiments 
‣ updated analysis with 50,000 good neutrino-like events moves 

IceCube from comparable to competitive 

•New results from IceCube/DeepCore coming soon!
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Backup
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IceCube in more detail
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50 m

1450 m

2450 m 
2820 m

IceCube Array
 86 strings including 8 DeepCore strings 
5160 optical sensors

DeepCore 
8 strings-spacing optimized for lower energies
480 optical sensors

Eiffel Tower
324 m 

IceCube Lab
IceTop
81 Stations
324 optical sensors

Bedrock
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On-going Improvements: Reconstruction Methods

•Use un-scattered photons (current method) 
‣ Conveniently avoids many uncertainties from ice 
‣ Inconveniently rejects almost all triggered events 
‣ Conveniently, most triggered events are not neutrinos! 

•Use all photons (my work) 
‣ Use estimated light yields from simulated ice model 
‣ Full likelihood reconstruction (8–10 dimensional space) 
‣ Fortunately keeps much higher fraction of neutrino events 
‣ Also keeps much higher fraction of non-neutrino events 
‣ Requires significantly more elaborate event selection
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How can we improve?
•Get more high quality events 
‣ HybridReco/MultiNest allows 10x 

statistics without degradation of 
resolutions 

•Maximize the control sample 
‣ improves constraints on systematics 
‣ keep cascade-like events 
‣ keep down-going region 

• Some things are good already 
‣ follow Juan Pablo’s method—take 

background sample from inverted 
veto of real data
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Example Fit Performance
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A B C

Energy
Low

High

Injected MC"
Best fit MC"

Unoscillated MC

IceCube Preliminary
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Simulation split into three PID samples
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Simulation split into three PID samples
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Mass splitting: PDG –1σ injected
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|�m2
31| injected = 2.33⇥ 10�3 eV2

IceCube Preliminary

MC Data Challenge



Mass splitting: PDG best fit injected
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|�m2
31| injected = 2.50⇥ 10�3 eV2

IceCube Preliminary

MC Data Challenge



Mass splitting: PDG +1σ injected
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|�m2
31| injected = 2.67⇥ 10�3 eV2

IceCube Preliminary

MC Data Challenge
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Backup 2
Juan Pablo’s slides from Neutrino 2014
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Atmospheric muon background 

> Use IceCube as a veto for DeepCore 

 

 

 

 

o Look for hits of muons entering the detector: tag and remove the events 

o Strategies: 

o Location of first DOM pair (trigger) 

o Count isolated but causally connected DOMs in veto region 

o Search for individual hits in a narrow time window from known problematic directions 
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Veto is used to tag muons and use them to fit the atm. muon background in the result 
This background is derived from data 
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> Signal*: Qμ of  E  ≤  50  GeV in charged current (CC) interaction 
 

 
 
 
 

 

 

 

Neutrino signal 

¦v hadronsphotons EN

PP ER v

hadronic shower 

P Atom 

Short lived 
hadrons Qμ 

cm
photons250~

*All other interactions are background for this study 

> Interactions in DC 
� DOMs triggered colored 

� Orange is early, blue is late 

� Dashed: neutrino direction 

� Solid line: muon 

� Red: interaction point 

 
 

 
 
 
 

 

 

 

10 GeV muon 
15 GeV cascade 

14 GeV muon 
4 GeV cascade 

We need the incoming direction and energy of these signal neutrinos 
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> Focus on the subset of neutrino events dominated by non-scattered photons 

> Build observables that depend on them 

� Minimally distorted by medium properties/event variations 

Selection and directional reconstruction: direct photons 

Idea developed in collaboration with J. Brunner* (Astropart.Phys.34:652-662,2011) 

> Cherenkov light projected in string = hyperbolas 

� Search for patterns to get 2 variables: 

� Number of direct hits →  quality criterion 

� Hyperbola  orientation  →  zenith angle 

Green crosses: all photons 
Blue circles: selected 
 
Green : true direction 
Blue: fitted direction 

8 GeV anti-νμ  

time [ns] 
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Constructing a full energy estimator 

> Dividing the problem in two parts 

 

 

 

 
 P 

Hadrons 

Qμ 

Find last point of 
Cherenkov emitter 

Correlation between reconstructed and true energy 

o Takes all information available in the detector 

o Uses the parameterized light emission of particles 

o Optical properties of the ice included 

o Good resolution down to Eν ~ 10 GeV 

 

 

𝐸reco = 𝐸ఓ 𝑅ఓ + 𝐸vertex 𝐸had, �⃑�vertex  

Fit of a cascade with a 
track segment 
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Fitting the oscillation parameters: θ23,  Δm2
23  

> Using a binned likelihood for a 3 flavor fit with matter effects 
� 2-D histograms as a function of energy and zenith angle 
� Systematic uncertainties as nuisance parameters 

� Other osc. parameters (θ12, θ13, Δm2
21) fixed 

Using global fits from Fogli et al. (Phys.Rev.D86,013012) 
 

> Systematic uncertainties included in the fit 

− ln(𝐿) ∝ ෍𝑡௜ − 𝑑௜ ln 𝑡௜ +
1
2

ν௜ − νො ଶ

σ஝ଶ௜

 

Systematic uncertainty Prior Implemented 
Atm. μ contamination Unconstrained, free fit from data 

Modifying the 
weights 

Atm. ν flux * From Honda 2011, Phys.Rev.D83:123001 

νe/νμ  deviation μn = Honda, σn = 0.2 

Spectral index (γ) * μγ = Honda, σγ = 0.05 

Photon collection eff. σeff= 10% From discrete 
MC variations Scattering in ice columns μa = 0.02 cm-1, σa = 0.01 cm-1 

Modeling of bulk ice Models in Nucl.Instr.Meth.A711,2013,73 Marginalization 

𝐸 = [7, 56]  GeV,         cos 𝜃௭ < 0 

* Cross section uncertainty covered by these parameters 
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Final neutrino sample 

Resolutions of the final sample 

> Including 3 years of full detector configuration (IC86) 

� 953  days of detector livetime 
 

> MC expectation: ~ 7,000 events 

� Disappearance of ~ 1,900 
 

> Energy threshold ~ 10 GeV 
  

> Zenith angle: 12 deg. res. at 10 GeV 

� Low energy side: 15 deg. res. 

� High energy: 5 deg. res. 
 

> Energy: 30% res. at 10 GeV 

� Not so reliable below 10 GeV 

� Above 50 GeV muons leave the detector 
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Likelihood scan and profile 

Parameter Normal hierarchy Inverted hierarchy 
Best fit 68% CI Best fit 68% CI 

sinଶ(𝜃ଶଷ) 0.512 0.422 – 0.600 0.509 0.417 – 0.594 

Δ𝑚ଷଶ
ଶ   (10ଷ  eVଶ) 2.684 2.503 - 2.877 2.563 2.385 - 2.754 

5293 events selected (2011-2014) 
χ2 = 45.5 / 56 dof 
No preference for NH vs IH 
1σ preference matter/vacuum 

Parameter Deviation at best fit 

Flux at horizon - 1 σ 

Spectral index + 0.48 σ  

νe deviation - 0.62 σ 

DOM eff. + 0.02 σ 

Scattering in ice 
columns + 0.63 σ 
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Final neutrino sample 

> Including 3 years of full detector configuration (IC86) 

� 953  days of detector livetime 
 

> MC expectation: ~ 7,000 events 

� Disappearance of ~ 1,900 
 

> Energy threshold ~ 10 GeV 
  

> Zenith angle: 12 deg at 10 GeV 

� 15 deg. at lowest energies 

� 5 degrees res. at higher energies 
 

> Energy: 30% resolution at 10 GeV 

� Strong bias below 10 GeV 

MC prediction, true energy/zenith angle 

Component 
Events in sample 

Osc. No osc. 

νμ 3755 5900 

ντ 273 - 

νe 678 650 

νNC 418 

Atm. μ 54 
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Final neutrino sample, reconstructed observables 

MC prediction, reconstructed energy/zenith angle 

> Including 3 years of full detector configuration (IC86) 

� 953  days of detector livetime 
 

> MC expectation: ~ 7,000 events 

� Disappearance of ~ 1,600 
 

> Energy threshold ~ 10 GeV 
  

> Zenith angle: 12 deg at 10 GeV 

� Low energy side: 15 deg. res. 

� High energy: 5 deg. 
 

> Energy: 30% res. at 10 GeV 

� Strong bias below 10 GeV 

� Above 50 GeV muons leave the detector 


