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Outline: 
• Introduction 
• Motivation for SP 
• DM-Ice17 @ SP 
• DM-Ice37 @ FNAL 
• Conclusions 
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1933 

Coma galaxy cluster 

First Evidence for Dark Matter 

Fritz Zwicky 

Compare mass calculated from: 
Luminosity ∝ M4   &   M = v2R/G 

Only 10% of kinematically-required mass was visible 

“What you see in a spiral 
galaxy ... is not what you get.” 

Vera Rubin 

1960’s 
Best fit 

Visible 

Gas 

Dark 

M33 Observations 

arXiv: astro-ph/9909252 



Cosmic Microwave Background 
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Much More Evidence… 

Baryon Acoustic Oscillations 

Large structure formation 

Gravitational lensing 

Galaxy cluster interactions 

Bootcamp - June 10, 2014 
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Cold 

•  Bottom-up structure formation 

•  Formation of Large-Scale Structure 

 

Non-baryonic 

•  Baryon fraction is measured 

•  Light elements from BBN 

•  BAO peaks 

 

“WIMP Miracle” 

•  Weak annihilation cross-section predicts 
proper relic density 

What is Dark Matter? Cold-DM 

Hot-DM 
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Collider Production 

•  Produce WIMPs and detect them 
as missing energy  

 

 

Direct Detection 

•  Detect nuclear recoil from 
WIMP-nucleon scattering 

 

 

Indirect Detection 

•  Search for excess of annihilation 
products 

•  Galactic Center, Solar core,   
Earth core 

Looking for Dark Matter 
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Assumptions:  
• Dark matter is made of WIMPs 

• scattering is spin-independent 

• elastic scattering off of nuclei 

• WIMPs are distributed in an isothermal 
halo with: 

• v0 = 220 km/s 

• vesc = 544 km/s 

• ρΧ = 0.3 GeV/cm3 

• Flux = 108 – 1010 wimps/m2 s 

Direct Searches 

WIMP-nucleon scattering 

Look for nuclear recoil 

X 

WIMP 

X 

nuclear recoil 

Dark Matter Direct Detection Priors 
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DAMA (2008) 
• Scintillation 
• 13 annual 

modulations 
• 8.9σ 

CoGeNT (2011) 
• Ionization 
• 1.25 annual 

modulations 
• 2.8σ 

CRESST (2011) 

• Scintillation + phonons 

• 4σ excess 

CDMS Si (2013) 

• Ionization + phonons 

• 4σ excess 

Hints of Direct Detection 
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DAMA 8.9σ Modulation: 

Phase: May 26th ± 7 days 

Period: 0.999 ± 0.002 yr 

Background: ~ 1 cpd/kg/keV 

Amplitude: 0.01 cpd/kg/keV 

“Tension” in the field … 

Expected DM max = June 2nd  
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Annual Modulation Dark Matter Searches 

with NaI Detectors 

Northern 
Hemisphere 

Gran Sasso 
DAMA/Libra 

250kg 
running 

Gran Sasso 
Princeton-NaI 

R&D 

Canfranc 
ANAIS 
~100kg 

starting in 2014? 

PICO-LON 
KIMS 
etc... 

 

Southern 
Hemisphere 

South Pole 
DM-Ice 

17 kg running 
R&D for 250 kg ice rock 

Several groups conducting ultra-pure crystal R&D with several 
vendors to go to the full scale 

Only experiments in the Southern Hemisphere can 
definitively confirm DAMA. 
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Why put NaI in the Ice? 
Use NaI(Tl) 

• Eliminate uncertainties due to detector 
effects, thresholds, recoil energies, etc 

• Crystal Array for sophisticated event 
tagging 

 

Go to the South Pole 

• Seasonal effects have opposite phase 
• 2200 mwe overburden 
• Ice < 1 ppt U/Th  (radon ~0) 

• Ice < 1 ppb K 

• Ice == great neutron moderator 
 

DM-Ice (250 kg) 

arXiv:1106.1156  

Bootcamp - June 10, 2014 
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DM-Ice17 



Co-Deployed with IceCube at the 
South Pole in December 2010 
• A 17 kg NaI detector  
• Operation since Jan. 2011 
• Data run from June 2011 

Goals… 
• determine the feasibility of deploying 
a remotely-operable detector in the 
Antarctic Ice 
• Assess the environmental stability 
• Establish the radiopurity of the 
Antarctic ice / drill ice 
• Explore the capability of IceCube to 
veto muons  
• Look for modulations 

DM-Ice17 Deployment 

•  2200 M.W.E. overburden 
•  ~85 muons/m^2/day 

50m 

1450m 

2450m 

2820m 

bedrock 

IceCube lab 

String 07 

String 79 
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Feb 2010 
• a great idea! 

Dec 2010 
• IceCube DAQ 
• NAIAD crystals 
• deployed at Pole 

10 months 



NAIAD NaI Crystal  
(Ø 5.5” x 6”, 8.5 kg) 

5 cm quartz lightguides 
(Suprasil B) 

2 IceCube mainboards 

Stainless Steel 
Pressure Vessel 

1.0 m 

36 cm (14”) 

PMTs:  
5” ETL 9390-UKB  

PTFE light reflectors 

IceCube 
DOM 59 

7 m 

DM-Ice 

IceCube 
DOM 60 

DM-Ice17  Detectors 

2 HV control boards 
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Prototype  x2 



• Remotely programmable sample rate, HV & 
threshold 

• Each PMT set to trigger  ~ 0.3 spe 

• Waveform recorded only when coincidence 
between both PMTs w/in 800 ns on a single 
crystal 

• Waveform from each PMT digitized separately 
in the ice by IceCube mainboards and sent to 
hub 

• Time stamp synchronized to IceCube GPS and 
calibrated for transit time 

• Data sent over satellite to Madison, WI 

Data Transfer 
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1. Temperature of the boards 

• ~10°C above surrounding 
ice 

• Fast (2-3 weeks) decrease 
during freeze-in 

• Slower decrease over a few 
months after freeze-in 

2. Pressure follows similar trend 
as temperature (ADC 
resolution limited) 

3. High Voltage on the PMTs 
 
Values recorded every 2 sec. 
before April 2012. Every 60 sec. 
since April 2012. 

  Temp and pressure 
sensors mounted 
on the mainboards 
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data 

data 

Detector Monitoring 



•   Single PMT trigger rates 

•   General decay over time 

•   Single trigger rate variation 
seems mostly in the noise 
(not observed in coincident 
data) 

Matthew Kauer - UW Madison Bootcamp - June 10, 2014 17 

data 

data 

•  Data run since June 2011 

•  99.75% uptime  

•  well known down times (power cycling, 
pedestal and dark noise runs) 

PMT Trigger Rates 

DM-Ice17 Livetime 

Detector Monitoring 



 –-–- ATWD ch0 (x16) 
 ––-- ATWD ch1 (x2) 
 ––-- ATWD ch2 (x0.25) 
 ––-- FADC 

PMT thresholds ~ 0.3 PE 

Coincidence requirement < 800 ns 

FADC (@ 40 MHz) 255 bins = 6.375 us 

ATWD (@ 200 MHz) 128 bins = 600 ns 

PMT Trigger Rate 100-150 Hz 

Coincidence Trigger Rate ~ 3 Hz 
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Data Acquisition and Digitizing 

• IceCube mainboards 
• Thoroughly engineered and 

tested 
• Slightly modified for DM-Ice 



Scintillation Events 

• Signal comes from 
scintillation in the crystal. 

• Coincidence required 
between the two attached 
PMTs (800 ns). 

• At high energies, signal has 
the characteristic 
scintillation pulse shape. 

• At low energies, events 
become a series of single 
photo-electrons. 
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Energy Spectrum: Gammas 

212Pb (Th-chain) + 214Pb (U-chain) 

214Pb (U-chain) 

214Pb (U-chain) 

208Tl (Th-chain) + 214Bi (U-chain) 

60Co 

40K 
213Bi (U-chain) 

214Bi (U-chain) 

208Tl (Th-chain) 

18 months of data from 
both PMTs on a single 
crystal 

cn
ts

/d
ay

/k
g

/k
e

V
 

Main backgrounds: 

•  U-chain 

• Th-chain 

• 40K 

• 60Co 

Internal contamination 
lines used for 
calibration 

DM-Ice17 Prototype1 Spectrum 
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Cosmogenic 125I  (in the NaI crystal) 

Cosmogenic lines verify our energy 
calibration; this is particularly useful 
for the prototype since we do not 
have an in-ice source.  

210Pb (46.5 keV) 

125I (67.3 keV) 

125I X-rays 

July 2011 

April 2012 

keV 

Decay of 125I 

cn
ts

/k
g/

d
ay

/k
e

V
 

surface X-rays 

July – April Residual 

Verified by 59.4 day half-life 
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pedestal 

1pe 

• Obtain 1pe-ped separation from 
dark noise runs (ie no coincidence 
requirement) 

• Normalize the energy to keV 
using the energy calibration 

 

xtal-1 = 6.1 +/- 0.07 pe/keV 
xtal-2 = 4.9 +/- 0.05 pe/keV 

NaI Light Yield 

Consistent with: 
• DAMA = 5.5 – 7.5 pe/keV 
• NaIAD = 5 – 8 pe/keV 



Energy Resolution 

DM-Ice17:  1 month of data from both PMTs for each crystal. 

Small NaI: E. Sakai, IEEE Transactions on Nuclear Science NS-34 (1987) 418. 

NAIAD: The NAIAD experiment B. Ahmed et al, Astropart. Phys. 19 (2003) 691. 

DAMA: R. Bernabei et al., Nucl. Instrum. Methods A 592 (2008) 297. 

DM-Ice17 has resolution 
competitive with other NaI 
crystal experiments, 
studied down to 3 keV.  

DAMA switching readout channel 

DAMA 

NAIAD  

Small NaI Detector 

DM-Ice17 Prototype 2  

DM-Ice17 Prototype 1  

• DM-Ice17 uses NAIAD 
PMTs and crystals.    

σ
/E
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Detector Stability 
 Energy calibration is stable to 1.3% over 18 months. 

 1.3% decrease over 18 months in light collection (peak position) observed at 600 
and 1460 keV 

 No significant change in calibration at 45 keV 
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Spectrum vs. Simulation 

208Tl (Th-chain) 

208Tl (Th-chain) 
+ 214Bi (U-chain) 40K 

213Bi (U-chain) 

214Pb (U-chain) 

• Good agreement with simulation 

• Simulation based on: 

– NaI from alphas and K from data 

– HPGe measurement of spare parts 

Alpha events in DM-Ice17 NaI 

gamma 
alpha 

Bi-Po 

Pulse-shape discrimination (1 - 9 MeVee) 

40K (beta shoulder) 



“Peak Finding” Cut 
A

D
C
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o

u
n
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• Beat down non-
scintillation sources 
of noise 
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Energy Spectrum after Peak Finding Cut 

210Pb 
40K 



Region of Interest 
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7.2 ± 0.4 dru 

210Pb on copper 
encapsulation surface 

3 keV (40K) 

210Pb + 129I 

• Good agreement 
with simulation 
above 8 keV 

• We understand our 
detector to 4 keV 

• Understanding cut 
efficiencies <8 keV 
in progress 
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Where does that put us now… 
• DM-Ice17 sensitivity is limited by internal K40 and surface Pb210 

• We knew this would be the case using NaI with ~10x higher internals 
• DM-Ice17 was a technical proof of principle for South Pole deployment 

• Next phase is for NaI R&D to push those internal backgrounds down 

2-4 keV region dominated by K40 

4-8 keV region dominated by Pb210 

With cleaner NaI, we’ll be able to 
make significant claims 
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inner crystal 

outer crystal 

Simulations with conservative bkgs show: 

2-6 keV region: 1.75 dru average  

DM-Ice250 Simulations 
DM-Ice250 

Inner Crystal Vetoed Spectrum 

Puts us in the “Champagne” region 
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Moving forward… 

Manufacturer Form Measurement 238U (ppt) 232Th (ppt) natK (ppb) 

Saint Gobain  Powder DAMA (HPGe) < 20 < 20 < 100 

Saint Gobain  Crystal DAMA/LIBRA 0.7 - 10 0.5 - 7.5 < 20 

Saint Gobain   Crystal ANAIS-0 6.1 3.2 410 

Saint Gobain Crystal DM-Ice (FNAL) 

Sigma-Aldrich  Powder (standard grade) DM-Ice (HPGe) 40 89 440 

Sigma-Aldrich  Powder (astro grade) DM-Ice  (HPGe) 63 < 95 < 126 

Sigma-Aldrich Powder (astro grade) A-S (ICPMS) - - ~ 4 

Alpha-Spectra Powder DM-Ice (HPGe) < 100 < 200 < 120 

Alpha-Spectra  Powder ANAIS-25 (HPGe) < 55 < 130 < 90 

• Internal backgrounds dominate, particularly 3 keV 40K 

• DAMA’s crystals (NIMA 592 (2008) 297– 315) : 

• 238U   : 1 - 10 ppt 

• 232Th  : 1 - 10 ppt 

•   natK    : < 20 ppb 

• NAIAD (DM-Ice17) crystals : 5 - 10x DAMA bkg  

(PLB 616 (2005) 17–24) 
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DM-Ice37 at FNAL 

330 feet overburden 
DM-Ice37 Test Bench 

• Crystal R&D 
• NaI Purity Measurements 
• Multi-crystal K40 veto 
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DM-Ice37 Preliminary Results  

•  Backgrounds  < 2 dru 

•  Sufficient to test the DAMA > 5σ with 3 years of data 

•  Alpha-Spectra can have 250kg ready in 12 months 
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Conclusions 
• DM-Ice17  is performing better than expected 

• Confirmed the feasibility for South Pole deployment 
• Environmental stability is much better than underground locations 
• Seasonal effects have opposite phase (ideal for Dark Matter detection) 

 
• DM-Ice37  is meeting expectations 

• Backgrounds < 2 dru 
• Crystal growth can meet our 12 month goal 
• In 3 years with 250kg we can make a 5 sigma statement about the DAMA 

result 
 

• DM-Ice250  is going to happen 
• Everyone wants to see a significant 

Southern Hemisphere result 
• An in-ice detector mitigates effects of 

Radon, spallation neutrons, external 
backgrounds, ect. 

• It can make a very strong statement 
about dark matter 
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