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Overview

1 Reconstruction method: HybridReco/MultiNest
I used in our Letter of Intent
I uses “hybrid” particle hypothesis and MultiNest as “minimizer”

2 Particle IDentification in PINGU
I used in our Letter of Intent
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Why are we using MultiNest to reconstruct data?
Reconstructing data means finding which particle(s) best matches
our data

I This typically is a minimization/maximization problem

To solve this problem the most used minimizers are
MIGRAD and SIMPLEX

I “This [MIGRAD] is the best minimizer for nearly all functions.”
Minuit Users guide, ROOT

I “Its [MIGRAD] main weakness is that it depends heavily on
knowledge of the first derivatives, and fails miserably if they are
inaccurate”

Minuit Users guide, ROOT

Unfortunately our likelihood space is not a smooth distribution,
neither MIGRAD nor SIMPLEX work well with it

We want a minimizer that works better for our likelihood space
⇒ use MultiNest for minimization!
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The MultiNest algorithm

A full description is presented in a paper by F. Feroz et al. (arXiv:0809.3437).

The MultiNest algorithm searches for the maximum in a
multidimensional likelihood by scanning the likelihood space.10 F. Feroz, M.P. Hobson & M. Bridges
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Figure 6. Toy model 2: (a) two-dimensional plot of the likelihood function defined in Eqs. (32) and (33); (b) dots denoting the points with the lowest likelihood
at successive iterations of the MULTI NESTalgorithm. Different colours denote points assigned to different isolated modes as the algorithm progresses.

Analytical MULTI NEST

D log(Z) local log(Z) log(Z) local log(Z
1

) local log(Z
2

)

2 �1:75 �2:44 �1:72� 0:05 �2:28� 0:08 �2:56� 0:08

5 �5:67 �6:36 �5:75� 0:08 �6:34� 0:10 �6:57� 0:11

10 �14:59 �15:28 �14:69� 0:12 �15:41� 0:15 �15:36� 0:15

20 �36:09 �36:78 �35:93� 0:19 �37:13� 0:23 �36:28� 0:22

30 �60:13 �60:82 �59:94� 0:24 �60:70� 0:30 �60:57� 0:32

Table 2. The true and estimated global and locallog(Z) for toy model 2, as a function of the dimensionsD of the parameter space, using MULTI NEST.

the two-dimensional case, with the parameters described above, the
likelihood is shown in Fig. 6.

In analysing this problem using the methods presented in
FH08, we showed that the sampling efficiency dropped signifi-
cantly with increasing dimensionality, with the efficiencybeing less
than 2 per cent in 10 dimensions, with almost600; 000 likelihood
evaluations required to estimate the evidence to the required accu-
racy. Using 1000 active points in MULTI NEST,we list the evaluated
and analytical evidence values in Table 2. The total number of like-
lihood evaluations and the sampling efficiencies are listedin Table
3. For comparison, we also list the number of likelihood evaluations
and the sampling efficiencies with the ellipsoidal nested sampling
method proposed in FH08. One sees that MULTI NEST requires an
order of magnitude fewer likelihood evaluations than the method
of FH08. In fact, the relative computational cost of MULTI NEST is
even less than this comparison suggests, since it no longer performs
an eigen-analysis at each iteration, as discussed in Section 5.2. In-
deed, for this toy problem discussed, the EM partitioning algorithm
discussed in Section 5.2 was on average called only once per 1000
iterations of the MULTI NESTalgorithm.

7 COSMOLOGICAL PARAMETER ESTIMATION AND
MODEL SELECTION

Likelihood functions resembling those used in our toy models do
occur in real inference problems in astro- and particle physics,
such as object detection in astronomy (see e.g. Hobson & McLach-
lan 2003; FH08) and analysis of beyond-the-Standard-Modeltheo-
ries in particle physics phenomenology (see e.g. Feroz et al. 2008).

from FH08 MULTI NEST

D N

like

Efficiency N

like

Efficiency

2 27; 658 15:98% 7; 370 70:77%

5 69; 094 9:57% 17; 967 51:02%

10 579; 208 1:82% 52; 901 34:28%

20 43; 093; 230 0:05% 255; 092 15:49%

30 753; 789 8:39%

Table 3. The number of likelihood evaluations and sampling efficiency for
the ellipsoidal nested sampling algorithm of FH08 and MULTI NEST, when
applied to toy model 2 as a function of the dimensionD of the parameter
space.

Nonetheless, not all likelihood functions are as challenging and it
is important to demonstrate that MULTI NESTis more efficient (and
certainly no less so) than standard Metropolis–Hastings MCMC
sampling even in more straightforward inference problems.

An important area of inference in astrophysics is that of cos-
mological parameter estimation and model selection, for which the
likelihood functions are usually quite benign, often resembling a
single, broad multivariate Gaussian in the allowed parameter space.
Therefore, in this section, we apply the MULTI NEST algorithm to
analyse two related extensions of the standard cosmology model:
non-flat spatial curvature and a varying equation of state ofdark
energy.

The complete set of cosmological parameters and the ranges
of the uniform priors assumed for them are given in Table 4, where
the parameters have their usual meanings. With


k

= 0 and

c

 2008 RAS, MNRAS000, 1–14

(Figure extracted from arXiv:0809.3437)
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The HybridReco/MultiNest hypothesis
Goal: reconstruct νµ CC (DIS) interactions (total 8 parameters)

νµ µ

Had. cascade

4 parameters: vertex(3), time

3 parameters: direction(2), energy/length
3 parameters: direction(2), energy

assume same direction for µ and cascade
To calculate likelihood of physics hypothesis use millipede

I relies on tables for µ and E.M. cascade light expectation
I µ is segmented according to µ-table requirements

F tables are made for a given track hypothesis/length
F recent creation of new improved tables

I after fit E.M. cascade energy converted to Had. cascade energy

Currently being used in several DeepCore analysis and PINGU
Can run in every event on the sample
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Reconstructing νe CC events as νµ CC events

νe CC interaction produces superposing cascades

νe e (cascade)
Had. cascade

Fitting a “cascade+µ” hypothesis
⇒ reconstructed µ should be 0 GeV

A νe CC final state cascade has an EM component and a
Hadronic component
⇒ reconstructed νe energy should be higher than “truth”
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Datasets used for studies
Using the latest considered geometry
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ν events simulated with the latest IceCube tools
I Eν spectra of E−1 → optimized for parametric analyses

Using slightly older event selection in respect to presentation by
Andreas Gross on “Muon rejection in ice”

I atmospheric µ rejection should not strongly affect ν resolutions
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Resolutions @PINGU: ν Zenith

νe and νµ resolutions
very similar

I timing information is
very useful to pin
direction

With improved tables,
νµ CC reconstruct
better than νe CC

Resolutions of ∼ 15◦ at
5 GeV and below 10◦

above 16 GeV
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Resolutions @PINGU: Eν

As expected, νe CC
energy reconstructed
higher than truth

νe and νµ resolutions
very similar

Peak at -1 related to
noise-only events

I should be removed
by the new version
of the rejection cuts

Resolutions of ∼ 25%
above 6 GeV
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Particle IDentification

The main goal is to separate cascades (νe CC) events from tracks
(νµ CC) events

At lower energies no separation by single variable
→ use multivariate analysis (TMVA) with 6 variables

HybridReco/MultiNest provides some variables
1 Reconstructed track (µ) length
2 Reconstructed Eµ

Eν
= 1− Y (Y is Bjorken-y parameter)

3 LLH difference between best fit and cascade only hypothesis

Other variables by looking at hit timing (see next slide)
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Variables used for PID – “reduced time” variables

t reduced
hit := thit − titer − ||~xhit − ~xiter ||/cice

True reduced time (ns)
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Charge in reduced time slices [−200,−6]ns (early),
[200,20000]ns (very late)
Time required to have more integrated charge than 10% of the
total charge
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PID variables agreement – looking at DeepCore data
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LLH best-cascade
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Good agreement
between data and MC
for input variables and
MVA score
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Results from MVA training
Still need to train and check PID for new geometry
⇒ using geometry from LoI on following plot!

MVA score
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PID efficiency energy dependence
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At low-energy low distinction power between νµ CC and νe CC
At higher energy “easier” PID: there is a clear µ track
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Summary

Currently using HybridReco/MultiNest to reconstruct PINGU
events

I Reconstruction does not require specific event selection
F increased sample size
F evaluating quality criteria to further improve resolutions

I Zenith resolution better of 15◦ at 5 GeV and below 10◦ above
16 GeV

I Resolution of 25% above 6 GeV

Particle IDentification performing well
I Currently using MVA, verified good agreement between data/MC of

inputs and MVA distribution
I 2-3 main samples: “cascade-like”, “track-like” (and “unknowns”)
I At high energy high efficiency of particle identification
I However it doesn’t really work below 5-10 GeV
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