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Finding Neutrinos

Use an outer layer to veto incoming
muons and select events starting
In the detector

Same method as in earlier 2(3) year
lceCube results that found
28(37) events above ~60 TeV

Since most muons and conventional
neutrinos are track-like, focusing
on cascades brings the energy
threshold down to ~10 TeV

Would like to go to even lower
energies
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Improved Veto Techniques

Incoming

Photon from track muon

* Additionally, look for any hits |
(not just in the veto layer)

detection

window
consistent with a track PRI EE T
1 i \
entering the reconstructed e
vertex “ 7 Vertex ®

Noise photon

e Scale fiducial volume with

deposited charge of event , |
to have a better chance of .. oa| [ T
finding vetoing hits for low £ e E oo Himas
energy events T
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Cascade/Track Classification

Photon from
Photon from

cascade @ —————— %

 Reversing the muon track . @
detection step also acts to @ )
identify starting track events, -~ - ___
l.e charged-current v,

|
|
Vertex : ", Track detection
* An event with > 10 hits following :
the vertex is classified as a ' )

track \ Cascade )
AN light front L7

* ~35% (60%) of astrophysical R
(conventional) v, CC events

identified as cascades
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Baseline Event Distributions
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information to appear

* Perform a binned likelihood fit on these distributions
to find the scaling of each atmospheric
component and the index and normalization of a
power-law astrophysical flux
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Component Signatures

Muons Down-going Mostly tracks
Conventional Low, ~E*7 Peaked at horizon, Mostly tracks
down-going
suppressed
Prompt Medium, ~E?" Isotropic, Cascades and tracks
down-going
suppressed
Astrophysical High, ~E*(?) |sotropic(?) Mostly cascades

(1:1:1 flavor ratio)

* Each component has a unique imprint on the distribution of events
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Results

283 cascades, 105 tracks in 2
years

Soft astrophysical index of 2.5
and zero charm is the best fit

90% upper limit on charm is 1.4 x
ERS prediction

Minor excess around 30 TeV in
the southern sky is consistent
with a statistical fluctuation

* Goodness-of-fit: 15%

* Correlated excess like this
happens ~5% of the time
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Events in 641 days Events in 641 days

Events in 641 days

Zenith Distribution
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* How does the astrophysical index
fit to such a soft value?

-Could some of this be charm?

* Zenith distribution doesn't show
the characteristic down-going
suppression if a charm
component were present

* Can we trust the calculation of
self-veto probability?
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Self-Veto Probability Verification

* Neutrinos and muons in
CORSIKA air showers with full
detector response simulated

* The analytic calculation shows
remarkably good agreement
with the full simulation

* Veto suppression also visible in
lowest energy data dominated
by conventional neutrinos

Events in 641 days
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Likelihood contour

lceCube preliminary

T
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Prompt normalization
Test statistic: —2A lnL
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Powerlaw index

* Anti-correlation between astrophysical index and charm flux

* E*requires a large charm flux, and is disfavored at >99% confidence
level
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Astrophysical Uncertainties

What if the astrophysical spectrum
Is not well-described by a power
law?

Unfold the astrophysical spectrum
as a piecewise function while
also allowing atmospheric
components to float
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90% charm limit only slightly
worsens: 1.4 — 1.5 x ERS
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Breaking the assumption of 10® 10° 10° 107
isotropy and allowing the flux in Neutrino energy [GeV)
each hemisphere to float
Independently worsens the limit
substantially: 1.5 — 3.6 x ERS
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More data

* Several independent event
selections reaching similar
conclusions

* BDT event selection and particle

identification with an even
lower energy threshold has
nearly identical results

* See talk by C. Ha
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Conclusions

Methods developed to use maximal information in energy, angular, and
flavor distributions to isolate atmospheric and astrophysical fluxes
No evidence for charm neutrinos yet

* Soft astrophysical power-law index of 2.5, zero charm is strongly
preferred

* Zenith distribution shows lack of self-veto suppression
* Limits depend on the astrophysical model, but are nearing the ERS
prediction
Measurements in muons are needed!
This is just one of many independent event selections in IceCube
coming to the same conclusions
* Several papers in the works!
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