Simulating radio signals from cosmic-ray showers reflecting from a surface (ZHAireS-reflex)

J. Alvarez-Muñiz, W.R. Carvalho Jr, D. García-Fernández, H. Schoorlemmer, <u>E. Zas</u>

Univ. Santiago de Compostela, Spain Univ. of Hawaii, USA

ARENA 2014, 9-12 June 2014, Annapolis (USA)

Motivation: UHECR radio detection from high altitudes

Triggered interest by ANITA

- 16 UHECR Events, 14 reflected
- Compatible with geomagnetic mechanism (correl. with B-field)
- Coherence unexpected at GHz!
 But simulations give it!

Also: ExaVolt, Sword, ...

ANITA Collaboration, Phys. Rev. Lett. 105 (2010) 151101

ZHAireS: Marriage of Aires +ZHS formalism (2011)

- **ZHS** "algorithm" 1990 H.R. Allan 1971:
 - Numerical solution of Maxwell's Eqs.
 (No assumptions on mechanisms)
 - Superposition of contributions from discretized e+ & e- tracks

- ω-domain (1990): terms e^{iω(t+nR/c)}
 t-domain (2010): travel times->widths
- Realistic treatment of travel times: variable refractive index n(h) in curved atmosphere (relevant for $\theta > 80^{\circ}$)
- Approximate light rays by straight lines

- **Aires** flexibility:
 - Different primaries (p, Fe, v,...), energies, directions,...
 - Many hadronic interaction models.
 - Different atmospheres, sites on Earth
 - also works in dense media.

Tested against data

Calculated radiation features:

- Cherenkov cone formed from density at X_{max}
- Cherenkov angle is very small
- Large time compression → sharp buildup of vector potential
- Lateral distribution does not spoil coherence because
 of small Cherenkov angle
- Coherent signal even at frequencies above 1 GHz
- Qualitative behavior can be partly understood as 1D current moving with the shower front:

$$E \sim \int dt N(t) \frac{e^{i\omega\left(t + \frac{n}{c}r(t)\right)}}{r(t)}$$

New features to "ZHAireS-reflex"

- Modified version of ZHAireS to:
 - calculate radio emission at high altitude after reflection
 - include effect of Fresnel coefficients
- Assumptions:
 - straight "light-ray" propagation (next slides)
 - reflection on flat surface (radio pool is < 30 km radius at θ < 86 deg.)
 - no roughness of reflection surface (see J. Stockham talk at this meeting).
- For each shower particle track:
 - Reflection point on ground leading to payload calculated
 - − Contribution → realistic time delays: track to ground & ground to detector
 - Fresnel field reflection coefficients accounted for each contribution

Straight versus curved "rays"

Negligible difference in arrival time between straight & curved propagation up to 70^o

Almost constant time difference between straight & curved: does not affect field

Compare approximation both for ground and detector

Use "ZHAireS-reflex" to

• Compare ground extrapolation to calculation including reflection

• Compare results with Fresnel coefficients in the calculation to simply applying the coefficients to the result

• Study variations with zenith angle

• Test scaling with energy

• Study effects of different off axis angle

Power spectrum: different zeniths

Power spectrum at detector vs ground extrapolation

300 MHz

Power spectrum at detector vs ground extrapolation

300 MHz

Fresnel coefficients: ignored

Fresnel coefficients: a posteriori

Fresnel coefficients: in ZHAireS

Energy Scaling

Measuring flux density & off-axis angle (spectral slope) => energy determination

Variation with zenith angle no Fresnel coeffiecients

Variation with zenith angle with Fresnel coeffiecients

Frequency spectrum at detector

Spectrum flattens as observer moves towards Cherenkov angle

Conclusions

- Compare ground extrapolation to calculation including reflection Conclusion: Large distance effects are very important
- Compare results with Fresnel coefficients in the calculation to simply applying the coefficients to the result Conclusion: Reflection coefficient can be applied a posteriori
- Study variations with zenith angle
 Conclusion: Fresnel coefficients enhance large zenith angle
- Test scaling with energy Conclusion: Scaling is remarkable for a given geometry
- Study effects of different off axis angle
 Conclusion: Spectral differences allow off axis determination