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Motivation

Depict analytically the MBR
mechanism
• Evaluation of the number
of primary charged
particles in an EAS

• Production of ionization
electrons and their time
evolution

• MBR emission using the
free-free approach
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A crude model for EAS
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Time evolution of ionization e− flux

Total number of primary e+/ e− per unit surface

ne,p(r, a) = Ne,p(a)
ldf(r, a)

2π

∫
dr r ldf(r, a)

• Total number of primaries at altitude a using
Gaisser-Hillas formula

• NKG function describing the lateral
distribution (LDF)

In this study, parameters are tuned to apply to a vertical shower
with energy 1017.5 eV to compare with [1].
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• Presence of a weakly ionized plasma
• Number of ionized electrons per unit length per energy

band

d2Ne,i

da dTe
(a, Te) = ρm(a) f0(Te)

〈
dE

dX

〉
1

I0 + Te
.

with parametrization from [2] :

f0(Te) =
K

1 + (Te/T )2.1

is the distribution in kinetic energy of the resulting ionization electrons and〈
dE

dX

〉
the mean energy loss of primary electrons per grammage unit
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• Presence of a weakly ionized plasma
• Number of ionized electrons per unit length per
energy band

d2Ne,i

da dTe
(a, Te) = ρm(a) f0(Te)

〈
dE

dX

〉
1

I0 + Te

Instantaneous flux of ionization electrons per kinetic energy band

φ0
e,i(r, a, Te) =

cβ(Te)f0(Te)

2(I0 + Te)

〈
dE

dX

〉
ρm(a) ne,p(r, a).
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A crude model for EAS
Production of ionization e−
Time evolution of ionization e− flux

• Time evolution of the flux of ionization electrons fully
encompassed in the energy distribution time evolution f(Te, t)

• Boltzmann equation accounting for all interactions at work

Assumptions :
• Ionization electrons static in space (low energy electrons, rate
of disappearence ∼100 ns)

• Neglect absorption effects

Solving Boltzmann equation
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Time evolution of ionization e− flux

∂f

∂t
(Te, t) = −nm(a)cβ(Te)

(
σatt(Te) + σexc(Te) + σion(Te)

)
f(Te, t)

+ nm(a)c
∫ Tmax

e

Te
dT ′eβ(T ′e)

(
dσion
dTe

(T ′e, Te) + dσion
dTe

(T ′e, T
′
e − Te)

)
f(T ′e, t)

+ nm(a)c
∫ Tmax

e

Te
dT ′eβ(T ′e)

dσexc
dTe

(T ′e, Te)f(T ′e, t)

With σi being the cross-sections of interest and nm(a) the density of molecules at
altitude a
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• Rates of collision τ−1
i = nm(a)cβ(Te)σi(Te)

• Process description of attachment, ionization and excitation
from [3], [4] and [5] respectively.

Characteristic time scales :
• τatt = 15 ns (50 ns) at

sea level (at a = 6 km)
• τion ≤ ps
• τexc ∼ ps

E > I0 : Ionization dominant
4.5 eV < E < I0 : Excitation dominant
E< 4.5 eV : Attachement, disappearance of e−
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Solution to Boltzmann equation obtained by MC simulation of all
processes at work
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Quick increase due to
ionization

Exponential decrease
due to attachment process

f(Te, t) ' f̃0(Te) exp

(
− t

τatt

)
with f̃0 quasi-uniform for Te
in [0,4.5 eV]

Migration of e− below the lowest excitation threshold of interest in
about 1ns
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The free-free approach
Suppression effects

Ionization electrons undergo quasi-elastic collisions with neutral
molecules in the atmosphere

e± +M → e± +M + γ

Photon production rate

rγ(r, a, t, ν) = nm(a)

∫ Tmax
e

0
dTe φe,i(r, a, Te, t) σff(Te, hν)

where
• Density of molecules at altitude a
• Flux of ionization electrons
• Free-free cross section : for low-energy electrons and GHz
photons σff(Te, hν) → σff(Te) = 1.211 10−8Teσm(Te)
(Electron momentum transfer cross-section tables from [6])

Imen Al Samarai ARENA 2014 - Annapolis



Introduction
Ionization electrons along the shower track

µ−wave emission from MBR
Simulation results

Conclusion & Outlook

The free-free approach
Suppression effects

The emitted spectral power per volume unit at each point (r, a) :

d2P

dνdV
(r, a, t) =

d

dν
(hν rγ(r, a, t))

=
hcρ2

m(a)NA
2AI0

〈
dE

dX

〉
σ̃ ne,p(r, a) exp(−t/τatt(a))

with

σ̃ =

∫ Tmax
e

0
dTe

I0

I0 + Te
f̃0(Te)β(Te)σff(Te)

The effective cross section =⇒ σ̃ ' 5 10−30 m2 (Nitrogen target)
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The free-free approach
Suppression effects

Semi analytical expression of the observable spectral intensity at any
ground position xg :

Φg(xg, t) =

∫ ∞
0

rdr

∫ 2π

0
dϕ

∫ ∞
0

da
1

4πR2(r, ϕ, a)

d2P

dνdV
(r, a, td(t, r, ϕ, a))

Considerations :

• Photons are emitted
isotropically

• Absorption effects found
to be negligible
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The free-free approach
Suppression effects

Do photons get absorbed within the interaction volume ?

Absorption coefficient
• Defined as the relative attenuation per unit length of EM
waves

• Derivation by making use of the detailed balance principle,
absorption and spontaneous emission

⇒ Close to shower core and maximum of shower development
αν ' 10−19 km−1

⇒ At GHz frequencies, the absorption is found to be negligible.
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• Monte Carlo sampling of the observable spectral intensity in r and
φ

• Spectral intensity as a function of time expected at different
distances from the shower core at ground level, for a vertical
shower with energy 1017.5 eV.
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⇒ Close to the shower core, values are in the order or below from the ones
measured of other sources of microwave radiations, such as geomagnetic
effects.
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Spectral intensity as a function of time expected at 10 km from the
shower core at ground level, for a vertical shower with energy 1017.5 eV.
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⇒Values obtained at 10 km from the shower axis are a factor 25 less than
expected when scaling beam measurements to air showers in reference
[1].
⇒ Good sensitivity microwave detectors should detect the expected MBR
intensity
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Conlusion

• Detailed analytical calculation of the MBR spectral intensity
has been undertaken

• Numerical solving of Boltzmann equation considering
ionization, attachment and excitation of secondary electrons
describe their time evolution in the plasma

• Calculated spectral intensity at ground gives a factor 25 lower
than expected in [1]

• Still achievable detection with good sensitivity sensors
• Plasma dispersion effects are still to include in the calculation
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