Askaryan Radio Array (ARA): Status and Performance

Carl Pfendner for the ARA Collaboration Ohio State University June 12, 2014

INTRODUCTION

GZK Process and Sources

- Greisen-Zatsepin-Kuzmin (GZK): Cosmic rays with E > 10^{19.5} eV interact with cosmic microwave background (CMB) photons
- Process produces neutrinos, some at ultrahigh energies (UHE)
- Neutrinos are not subject to these successive interactions and happily continue on.
- UHE neutrinos could also be produced at a source location
 - If observed, will trace back to source

Large Volume Detectors

- Consider GZK models, Antarctic ice, earth shadowing, neutrino cross sections $F \propto \frac{1}{\Delta t \Omega}$
 - Less than 1/km³/year/energy decade
- Synoptic balloons
 - Large target volume O(10⁶ km³); short flight time 30-40 days
 - More limited viewing angles \rightarrow less solid angle
 - Must be reconstructed after flight and "landing"
 - Good as a "discovery" instrument for highest energies (>10²⁰ eV)
- *In situ* arrays
 - Long operation time (years); smaller observable volume O(100 km³)
 - Larger solid angle for observable signals
 - Environmental problems in situ measure and model environment, ice
 - But better able to obtain more information about event direction, pol., etc.
 - Good as an observatory long term stability, reaches lower energy (10^{17} eV)

Detection technique

- How to get large-scale detection -
 - Brute force: make 100 IceCubes
 - Use a different approach radio Cherenkov technique
 - Coherent Cherenkov signal from net "current," instead of from individual tracks
 - A ~20% charge asymmetry develops in the shower (positrons annihilated, electrons not)
 - If $\lambda >> R_{Moliere}$ (radial size scale) \rightarrow Coherent Emission
 - Hypothesized by Gurgen Askaryan, 1962
 - Effect observed in ice, water, salt
 - Impulsive bipolar signal
 - Long (~1 km) attenuation lengths in 0.1-1 GHz → large observable volume

Detector Concept

- Place antennas in ice to observe the radio signals
- Delays in arrival times used for reconstruction
- 3-D array design for each station
 - Varying baseline directions
 not localized to 1 plane
 - Good reconstruction in arrival direction from surrounding ice volume
- Observation angle determines the coherence of the signal and thus frequency content

EXPERIMENT AND DETECTOR

ARA Collaboration

USA:

Ohio State University University of Delaware University of Kansas University of Maryland University of Nebraska University of Wisconsin – Madison University College London UK: Belgium: Université Libre de Bruxelles Chiba University Japan: Taiwan: National Taiwan University Weizmann Institute of Science Israel: Germany: University of Bonn Australia: University of Adelaide

- International collaboration with 12 institutions
- ~50 authors

ARA layout

- Currently installed: 3 design stations + 1 shallow prototype Testbed
 - Installation dates: Testbed 2010-2011 @ 30 m depth;
 - A1 2011-2012 @ 100m depth; A2 and A3 2012-2013 @ 200 m depth
- Next installation phase: 7 more stations for ARA10
- Total planned 37 stations viewing ~ 100 km² of surface area

Station Design

- 4 strings with 4 antennas each
 - 2 pairs (upper and lower) of 1 Vpol and 1Hpol antenna
- 2 Calibration pulser antennas @ receiver antenna depth
- 4 fat dipole antennas at surface for cosmic ray identification
- Deployed 200m deep in ice minimize effect of firn layer

 Hpol quad-slotted cylinder antenna

 Vpol bicone antenna

- Bandwidth: 150-850 MHz
- Azimuthal symmetry, dipole at low frequencies

Importance of Deep Deployment

- Firn layer of compacted snow
 - − Quickly changing index of refraction (~1.35 \rightarrow ~1.78 within top ~150 m of ice)
 - Causes curvature in paths of rays in ice
 - Limits viewable volume and observable neutrino incident angles
 - − 30 m \rightarrow 200 m depth: increases effective volume by factor of ~3.2
- Cost-benefit analysis
 - Ice closer to surface is colder, longer attenuation length
 - Drill to lower depths to gain effective volume vs money and time to drill further

Electronics

- 3.2 Gigasamples/sec rate
- Trigger
 - Tunnel diode acts as a power integrator over few ns time scale
 - Requires 3 excursions of tunnel diode output above threshold within 110 ns in antennas of same polarization (3/8)
 - Threshold automatically adjusted to maintain steady global trigger rate
- 12-bit digitization
- 400 ns output waveform

- Notch filter at 450 MHz removes communications signals
- LNA for each antenna improves received signal strength above background

See talk by Thomas Meures in afternoon for further developments

ANALYSIS STATUS

AraSim

- Official collaboration Monte Carlo simulation package for assessing sensitivity and general use
- Writes simulated events in data format for direct comparison
- Simulates full trigger and signal chain for neutrino events detected by ARA stations
- Uses parameterized shower signal
- Takes into account
 - Index of refraction model
 - Calibrated noise simulation
 - Antenna and electronics responses
 - Trigger model

Testbed Analysis

- Total 16 antennas, 8 borehole antennas at 150 MHz to 850 MHz
- Maximum depth of antennas ~ 30 m
- 3 sets of calibration pulsers
 - Each set has a Vpol and an Hpol pulser
- First ARA neutrino searches carried out with Testbed station data

Time

Time

Voltage

Voltage

Time

Time

ARA – Testbed Neutrino Analysis

- Standard ARA blinding protocol examine 10% of data to characterize backgrounds and tune cuts
 - Thermal Noise
 - Continuous wave (CW)
 - Anthropogenic impulsive background
- 3 analyses ~330 million events
- OSU Cut-based Analysis stage 1: Feb-Jun 2012; stage 2: Jan 2011-Dec 2012
 - Interferometric reconstruction from ray-traced cross-correlation map
 - Optimized cuts for background rejection and signal retention
- UCL Cut-based Analysis Jan 2011 Dec 2012
 - Uses least-squares fit to a source location
 - Examines the coherently summed waveform for power
- KU Template-Based Analysis only Mar-Aug 2011
 - Hit times from voltage above threshold, impulsiveness and quality cuts
 - Hit pattern forms a "template"; reject repeated templates

OSU analysis - Reconstruction Quality Cut

- Reconstruction based on timing from ray-tracing use 30 m and 3 km maps in Hpol and Vpol
- Requires at least one reconstruction map to be of good quality
 - 1 deg^2 < Area of 85% contour surrounding the peak < 50 deg^2
 - Total 85% contour peak area < 1.5 x Area of 85% contour surrounding the peak
- Depending on the polarizations which pass the cut, the event is separated into Vpol and/or Hpol channels
- Rejects ~95% of noise-dominated events after initial quality cuts

OSU analysis - Reconstruction Quality Cut

- Reconstruction based on timing from ray-tracing use 30 m and 3 km maps in Hpol and Vpol
- Requires at least one reconstruction map to be of good quality
 - 1 deg^2 < Area of 85% contour surrounding the peak < 50 deg^2
 - Total 85% contour peak area < 1.5 x Area of 85% contour surrounding the peak
- Depending on the polarizations which pass the cut, the event is separated into Vpol and/or Hpol channels
- Rejects ~95% of noise-dominated events after initial quality cuts

2nd V_{peak} / Correlation Cut

- Other cuts : Data Quality cut, Down cut, CW cut, Delta delay cut, Gradient cut, Geometry cuts (clustering, South Pole, Calibration Pulser), periods of known increased activity at South Pole
- Expect a correlation between V_{peak}/RMS from waveform and correlation value from reconstruction map for an impulsive event
- After removing known background events with other cuts, use this relation to get background estimation
- We optimized the cut for best limit on maximal Kotera et al. model
- As a last cut, this rejects 22% of Kotera neutrino flux

Simulated 10¹⁸eV v set with cuts applied

UCL Analysis Reconstruction

- Obtain coherently summed waveform (CSW):
 - Iteratively find the best correlation between a waveform and the CSW; obtains set of delays with best correlation
- Compare delays used to make the CSW to delays expected from putative source positions: minimize $\chi^2 = \Sigma (T_{expected} T_{observed})^2$
- Cut events with $\chi^2 > 2$.
- Also cut events with excess CW power

UCL - "Powherence" Cut

- Linear combination of:
 - peak power of the CSW
 - sum of the maximum correlation values of antennas with the CSW of the remaining antennas
- Expect impulsive events to separate out from noise, CW

Clustering - OSU, UCL

- Both analyses reject events reconstruction to a location where an excess of events can be found
- Also reject South Pole phi range and require reconstruction in the ice

KU Analysis – Template-based

Initial Requirements:

CW filter 4 antennas have peaks in excess of 6X RMS Minimum waveform power requirement well-reconstructed single source vertex non-pulser reconstruction location

- Template matching: take remaining events and find the cross correlation between the events
 - If events have high CC, they are alike and are thus rejected

Analysis Results

- OSU analysis
 - Stage 1: 3 events passed cuts
 - Known background event types, adjusted the gradient and clustering geometric cuts to better match those types
 - Stage 2: 2 events passed cuts
 - Also known backgrounds, slightly expanded clustering geometry cuts to reject the events (5% change in rejected area)
- UCL analysis: 1 event passed cuts
 - CW event with two carrier frequencies, non-impulsive
- KU analysis: 1 event passed cuts
 - Consistent with calibration pulser event, misidentified by template matching
- No neutrino candidates

Sensitivity

- First limits from ARA Testbed found (see <u>arXiv:1404.5285</u>)
- Limits comparable for the two 2011-2012 analyses
- Projected sensitivity of expanded array extends to GZK flux models

Future Improvements

- Reconstruction methods
 - Account for index of refraction and reflection
 - Reconstruction quality parameters
- Better identification of anthropogenic signals from South Pole
 - Improve livetime and event selection during active season
- Improved CW removal
 - Developing phase variance technique for filter instead of cutting outright
- Improved trigger
 - require causal time sequence with respect to known geometry

Summary

- ARA is continuing to be built

 Drilling and installation planned for this season
- End-to-end calibration using TA LINAC planned
 See talk by Keiichi Murase in the second session
- First limits from Testbed analysis
 - arXiv:1404.5285, to be submitted to Astrophysical Journal
- Further stations will see marked improvement in sensitivity
 - Deeper station, more antennas
 - Improved (2nd generation) analysis techniques
 - See talk by Thomas Meures in the second session

Backup Slides

Passed Events Table from 2011-2012 TestBed Data

		Total		Quality Cut	Reco. Qual			
Events	Events ~330,000,00			157,019,347	3,265,047			
Vpol channel				Hpol channel				
		Pass Events			Pass Events			
Reco.Qual V	Reco.Qual <mark>Vpol</mark>			Reco.Qual <mark>Hpo</mark> l	I,443,303			
NoisyTim	NoisyTime			NoisyTime	1,095,497			
Geom Cut	s	1,122,083		Geom Cuts	904,099			
Gradient C	Gradient Cut			Gradient Cut	903,036			
Delta Dela	Delta Delay			Delta Delay	145,196			
CW	CW			CW	142,581			
Down	Down			Down	19,394			
Rcut	Rcut			Rcut	0			

Cut Efficiencies

Neutrino Limit from 2011-2012 Testbed Data

- After finalizing all the cuts, we looked at remaining 90% of data
- ~ 0.06 expected thermal background events and ~ 0.02 neutrino events from 1.5 years of Kotera flux from TestBed
- Analysis cut efficiency on Kotera model ~ 40% for V_{peak}/RMS from 7 to 20
- From first 2012 4 months analysis, we had 3 survived events and from 2011-2012 analysis, we had 2 survived events (total livetime ~ 285 days)
- Both survived events are anthropogenic backgrounds (rejected by modifying geometric cuts)

■11 Zero neutrino candidate ever ENA 2014 - Annapolis, MD, USA

Rejecting CW Background

- Design cut based on ANITA experience
- Make average spectrum for each run (1 run = 18000 evts ~ 30 minutes)
- Reject events whose Fourier transformed voltage waveform exceeds
 3.5 dB baseline anywhere in frequency space
- Will optimize the cut using AraSim and 10% not blinded testbed data RENA 2014 - Annapolis, MD, USA

Event Cut Table (OSU)

Total	3.3E8											
Cut	Number passing (either polarization)											
Event Qual.	1.6E8											
Recon. Qual.	3.3E6											
		VPol		HPol								
		Rejected		Rejected								
	In sequence	as last cut	as first cut	In sequence	as last cut	as first cut						
Recon. Qual.	1.8E6			1.4E6								
SP Active Period	1.4E6	125	4.9E5	1.1E6	13	3.5E5						
Deadtime < 0.9	1.4E6	0	3.2E4	1.1E6	0	9.2E3						
Saturation	1.4E6	0	1.4E4	1.1E6	0	618						
Geometric, except SP	1.3E6	7	9.9E4	1.0E6	0	4.6E4						
SP Geometric	1.1E6	0	2.9E5	9.0E5	1	2.0E5						
Gradient	1.1E6	0	1.4E4	9.0E5	0	4.6E3						
Delay Difference	1.8E5	0	1.5E6	1.5E5	0	1.2E6						
CW	1.8E5	0	1.3E4	1.4E5	1	3.4E4						
Down	1.7E4	15	1.6E6	1.9E4	1	1.2E6						
V _{peak} /Corr	0	1.7E4	1.8E6	0	1.9E4	1.4E6						

Table 2: This table summarizes the number of events passing each cut in the Interferometric Map Analysis, in Phase 2 (2011-2012, excluding Feb.-June 2012). We list how many events each cut rejects as a last cut, and how many are rejected by each cut if it is the first cut. After the Event Quality and Reconstruction Quality Cuts are applied, VPol

Reconstruction Error - Simulation

6/12/14

Reconstruction - Calpulser

Reconstruction - Calpulser

