DirectFit event reconstruction

Method of the fit: exhaustive search
* simulate cascade events with various x,y,z,0,¢ (and fit for E,t;), and
compare them to the data event.
« optionally for each new track simulate cascades of equal energy
spaced along the track and solve for best combination (next slide)
* the simulated event that looks most like the data event is the result

Advantages:
 simple and robust
» most precise description of ice can be used in reconstruction
(SPICE Lea ice model: including tilt and anisotropy)

Drawbacks:
* can be very slow (~1 day/event)

Dmitry Chirkin, UW Madison



Track reconstruction

For each new track given by x,y,z,0,9,t,, simulate cascades of equal energy at
equal intervals along the track.
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Each cascade i creates hits in DOMs/time bins J: leaving charge Q;.

For the pattern of hits that we actually have in data, g;, we can find the best
representation of the event in terms of the simulated cascades by creating a
weighted superposition (linear combination) of the cascades /.

This can be done by maximizing the limited-simulation-statistics likelihood
(LSSL) against the weights, starting with an NNLS solution to q=w,Q;.

This is done for different t, and the t, maximizing the likelihood is chosen.



Comparing a simulation event with
a data event

Use the same likelihood function as in the SPICE Lea fit:
includes Poisson fluctuations in data, simulation, and a 20%

allowance for non-Poisson errors (in description of ice and others).

All feature-extracted waveforms (charge histogram vs. time in a DOM) are
binned in 25 ns bins, and then processed with a Bayesian blocks
procedure, which combines low-count or nearly-same-charge bins.

This is the same procedure as was used in the SPICE Lea fit.

So, we are using exactly the same comparison procedure as was used in
the ice model fit (here: SPICE Lea).



LSSL description

Suppose we repeat the measurement in data ny times and in simulation ng times.
The u, and uy are the expectation mean values of counts per measurement in
simulation and in data.

With the total count in the combined set of simulation and datais s + d , the
conditional probability distribution function of observing s simulation and d data

counts is
S d
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There is an obvious constraint
Nsfts +napd = s+d

which can be derived, e.g., from the normalization condition

s+d
: Ngfs Ngld
Z P(pg, ptg; s, dls +d) = ( sH n 11 1> =1

s+d s+4+d

s.d



Two hypotheses:

If data data and simulation are unrelated and completely independent from each
other, then we can maximize the likelihood for u, and u4 independently, which
with the above constraint yields

S d

fs = —, g = —
N oy

On the other hand, we can assume that data and simulation come from the same
process, i.e.,

s+ d

= Hs = g = ———
Ng + Ny

We can compare the two hypotheses by forming a likelihood ratio
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To enhance the differences between the two likelihood approaches, consider
that the amount of simulation is only 1/10t" of that of data



n5=lO nd=100

80 _ Full likelihood 4.7710.53 go | Poisson likelihood 4.2940.52
70 70F
60| 60
50 50
40+ 40
30} 30¢
20+ 20|
10} 10F
. R L R I . . | Lo T
) 2 4 6 8 10 0 2 4 6 8 10
value of the fitted parameter value of the fitted parameter
60 - ¥ fit 6.15+0.82 350 Poisson true mean 5.00+0.12
50 300 ]
: 250
40 -
: 200
30+ g
: 150 |
20¢ 100|
10 50
O ] P R e e OE ) | L ] J L L | ) L ) ] L ) ) |
2 4 6 8 10 2 4 6 8 10
value of the fitted parameter value of the fitted parameter

Using full range of the data and simulation Simulated exp(-x/5.0) with mean of 5.0



Search algorithm

Start with x,y,z of COG, 6=0, ¢=0, E=10° GeV, t,=0

Propose 25 sets of cascade parameters Xx,y,z,0,¢ from a gaussian distribution
with rms=10 m in x,y,z and rms=30 degrees in 0,¢. Keep the values of E and t,.

For each proposed simulated event find the best E (by scaling the simulated
event) and t, (by time-shifting the hits in the simulated event); calculate the
likelihood L.

Out of these 25 event select the one with the best value of L and update the 7
cascade parameters; remember the best value of L: L".

Repeat steps 2-4 40 times. Use 20 events resulting from step 4 with the best
values of L™ to update the rms in x,y,z, and rms in 6,¢, and to establish
correlation between these (important since the brightest point of the cascade is
some distance away from the starting point along the cascade direction; also the
Cherenkov light is emitted predominantly forward).

Repeat steps 2-5 10 times; The final result is calculated by averaging simulated
events with the best 160 values of L". The rms of x,y,z, and the rms in 6,¢ are
also computed to provide a measure of uncertainties.



Other search algorithms and
uncertainties

The algorithm described on the previous slide is an optimized variant of
» Localized random search.

Other methods that | tried are:

» Simultaneous perturbation stochastic approximation with and without
the estimate of the second derivative (Newton-like method).

» Markov chain with transitional probability defined by condition L, ,<L..

Although the rms values in cascade parameters obtained in the /ocalized
random search and Markov chain methods are probably related to the
uncertainties of the measurement, the well-defined values of the
uncertainties should probably be calculated by applying the reconstruction
to a few (dozen?) cascade events simulated with the same parameters.



Uncertainties with ABC

ABC (Approximate Bayesian Calculation) solves for an approximation to the
posterior PDF when the likelihood function is not known or its calculation is
intractable.

We need a distance (in this case LSSL comparing simulation sets with data)
and consider steps sampled from a proposal distribution which result in the
distance smaller than a pre-set upper bound. All such steps are accepted.

This is a reversible Markov Chain, with a stationary distribution being the
posterior parameter PDF for events similar to the data event with LSSL<bound.
This approximates the parameter PDF for the actual given data event.

Statistical sampling is possible (performed for Bert). It is unclear if the
systematical uncertainties can be included in this sampling procedure (due to
curse of dimensionality).



Track reconstruction in 28 HE
events

Only 1 event out of 28 was reconstructed with the reconstructed track going
through the hits left by the muon.

In the other 6 events containing a track along with the interaction cascade
the contribution to the likelihood from the smaller losses along the track are
“washed out” by the fluctuations in the large contribution from the
interaction cascade.

—> this results in track missing the smaller hits left by the muon.
—> possibly solved by over-simulating, however a factor x10 did not
help (although only tried on the first 3 muon events)
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Likelihood:
» Likelihood description for comparing data with simulation (LSSL:

limited simulation statistics likelihood), arXiv:1304.0735
* DirectFit (and updated ice model): arXiv:1309.7010 (ICRC, Rio)

DirectFit experimental code:

http://icecube.wisc.edu/~dima/work/WISC/ppc/bkp/llh.tgz
http://code.icecube.wisc.edu/svn/projects/ppc/trunk/private/ppc/lih/




nvidia-smi -Isa

GPU 0:

GPU 1:

GPU 2:

GPU 3:

GPU 4:

GPU 5:

As fast as 900 CPU cores
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GZK9000 GPU Cluster

Deployed in 2012 at the WID/MIR datacenter (shared with CHTC @ 30%)

12 servers, each with
2x AMD 6176 ( 12 cores/CPU)

4x GPUs Nvidia Tesla M2070 (448 CUDA cores/GPU)
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Performance (normalizedto m2070)
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GPU Cluster expansion 3333

0
IcECUBE

During 2012, purchased several evaluation systems based on
consumer-grade GPUs. Benchmarked running simulation production.

See: https://wiki.icecube wisc.edu/index. php/GPU Resources

From [C86, the main simulation production has moved into GPU-based
photon propagation.

Several months experience running on GZK9000 cluster.
=> 300 GPUs need estimated for real time simulation.

Agreed to provision 50% of this resource at UW-Madison. Plan to bring
this new resource online during Summer 2013.

Plan forward: keep a constant budget for GPU expansion in the next
years foreseeing a general increasing need for GPU power.



New GPU resources on NPX4

16 servers recently purchased and deployed at UW-Madison
e CPU: 2x Intel Xeon E5-2670 (16 cores/server, 4GB RAM/core)
e GPU:

o 8 servers with 4x Nvidia GTX 690 cards

o 8 servers with 4x AMD Radeon 7970 cards

Just made available to the collaboration as additional NPX cluster

slots.




Production optimizations

lceProd

IceProd

database

IceProd Master

Type
IC79
NuMu events

200000
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NuMu events
200000
NuMu E*-1 Hybrid
5000
NuE events
200000
CORSIKA polygonato
25000000
CORSIKA LE 5-comp
10000000
CORSIKA HE 5-comp
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of CPUs/GPU
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