Cascade Reconstruction in the Baikal Experiment

Bair Shaybonov

on behalf of the Baikal Collaboration

15.10.2013

Cherenkov Radiation from Cascades

•
$$N_{tot}^{ch} = BE_0$$
,

- $B = 1.04 1.16 \times 10^8 \, TeV^{-1}$ for EM cascades,
- $B \simeq 0.86 \times 10^8 \, TeV^{-1}$ for hadronic cascades
- ▶ Ψ(θ, E, x):
 - weakly depends on E,x
 - photons are emitted at all angles

Cascades in Water

Simulation results:

• Anisotropy of $\Psi(\theta)$ remains up to 200 m in water \rightarrow allows to reconstruct cascade direction by amplitude information

- We have tabulated n
 _{pe}(ρ, z, θ, φ, τ) in a volume 10⁸m³ around cascade taking into account spectral dependence of
 - Light velocity
 - Light Absorption (L_a = 22 m at λ = 475 nm)
 - Light Scattering ($L_s = 30 \div 50 \text{ m}$ and $\cos \bar{\phi} = 0.88$)

Reconstruction of cascade position $\chi_t^2 = \frac{1}{(N_{hit}-4)} \sum_{i=1}^{N_{hit}} \frac{(T_i(\vec{r}_{cas},t_0)-t_i)^2}{\sigma_{ti}^2},$ where $T_i(\vec{r}_{cas},t_0)$ - time of flight of unscattered photons

Reconstruction of cascade direction and energy $L_A = -\sum_{i=1}^{N_{hit}} \ln P_i(A_i, E_{cas}, \vec{\Omega}_{cas}(\theta, \phi)),$ P_i are calculated from tabulated $\bar{n}_{pe}(\rho, z, \theta, \phi, \tau)$ and \vec{r}_{cas}

Search Strategy

NT200:

- ▶ 192 OM at 8 strings
- ▶ 72 m height, 42 m diameter
- 1100 m depth, 200 m above lake bed
- 15 inch Quasar PMT
- Pair of OMs are switched in local coincidence

- 100 TeV cascades are seen up to 100 m from the detector
- Search cascades in the external water volume
- Need to reject huge background from atm µ

Experimental Test of the Reconstruction Technique

Light Source

- Nearly Isotropical light source
- 147 m far from the center of NT-200

- $\delta R/R \approx 8\%$
- $\delta \lg I \approx 30\%$

Background Rejection

First cuts to reject atm μ

- ► *N_{hit}* > 15
- ► t_{min} = min(t_i t_j) > -10 ns, where *i*-th OMs is higher than *j*-th at the same string
 - rejects events with downward moving light front

Survival events:

- Reject atm μ by a factor of 10^3
- Only nearly horizontal muons generated cascades pass these criteria
- 82% (94%) of triggered OMs have time (amplitude) response from cascade

Cascade Reconstruction

- Reconstruct cascade position by χ²_t minimization
 - if time residual on OM is > 15 ns it is excluded and minimization repeats
- Reconstruct cascade energy and direction by L_A minimization

Quality cuts

- *N*^t_{hit} > 18
- ► $\chi_t^2 < 3$
- ► *L_A* < 20
- ► $\xi_{rec} < \xi_{max}$, where
 - ξ_{rec} likelihood of hit OMs to be hit and unhit OMs to be unhit,
 - ξ_{max} maximal likelihood of 100 simulated cascades
- 3 bottom layers of OMs were removed from the analysis

Cascade Reconstruction

- Reconstruct cascade position by χ²_t minimization
 - if time residual on OM is > 15 ns it is excluded and minimization repeats
- Reconstruct cascade energy and direction by L_A minimization

Quality cuts

- *N*^t_{hit} > 18
- ► $\chi_t^2 < 3$
- ► *L_A* < 20
- ► $\xi_{rec} < \xi_{max}$, where
 - ξ_{rec} likelihood of hit OMs to be hit and unhit OMs to be unhit,
 - ξ_{max} maximal likelihood of 100 simulated cascades
- 3 bottom layers of OMs were removed from the analysis

- ► $\delta r \approx 7\%$
- $\delta \lg E \approx 20\% \ (\delta E \approx 60\%)$
- $\psi_{med} = 4.5^\circ, \bar{\psi} = 6.2^\circ$

- $\delta \lg E \approx 20\% \ (\delta E \approx 60\%)$
- $\psi_{med} = 4.5^\circ, \bar{\psi} = 6.2^\circ$

- ► $\delta r \approx 7\%$
- $\delta \lg E \approx 20\% \ (\delta E \approx 60\%)$
- $\psi_{med} = 4.5^\circ, \bar{\psi} = 6.2^\circ$

1038 days (April 1998 to February 2003) of data were analyzed

Statistics:

- 18384 events (N_{hit} > 15 и tmin > -10 нс)
- ▶ $\simeq 9300$ events (*N_{hit}* > 18, *tmin* > -10 нс, ξ_{rec} < ξ_{max}, χ_t^2 < 3, *L_A* < 20, 3 bottom layers of OMs were removed from the analysis)

Final Cuts

Additional cuts for v events separation: $E > 130 \text{ TeV} (40^\circ < \theta < 90^\circ) \text{ M} E > 10 \text{ TeV} (\theta > 90^\circ)$

Results

• Average number of v events N_{mod} from some astrophysical models

Model	$N_{mod}(v_{e,\mu,\tau})$	$\Delta E_{90\%}$, PeV	$n_{90\%}/N_{mod}$
S05	0.7	0.10÷ 30	3.4
Ρ <i>ρ</i> γ	4.4	$0.30{\div}100$	0.5
$M pp + p\gamma$	1.7	0.02÷500	1.4
MPR	1.4	$0.10{\div}100$	1.8
SeSi	2.4	$1.00 \div 50$	1.0

• Upper limit on E^{-2} diffuse v flux of all flavors ($v_e : v_\mu : v_\tau = 1 : 1 : 1$):

 $\Phi_{\nu} E^2 < 2.9 \times 10^{-7} \text{cm}^{-2} \text{s}^{-1} \text{ster}^{-1} \text{GeV}$