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•  Information via photons:

•  Number ~ energy

•  Direct photons ~ direction


•  Physical mechanism:

•  Vertex physics

•  Particle propagation

•  Cherenkov emission


Detectors see showers and tracks via photons


•  What is the effect of intrinsic fluctuations in the 
physics?
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Principles


•  What is the best we can do if we detect 
every single photon?

•  Simulate many identical events

•  Look at fluctuations in photon output and track 

behaviour


•  Given we detect only some photons, 
what’s the best we can do?

•  Estimate mean detector response

•  What minimum error does this give us?

•  Always make optimistic assumptions on detector 

response
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Muons: tracklength and deviation


•  10 Muon tracks, 3-13 GeV:


•  They are not perfect straight lines (direction error)

•  Length also differs (energy error)
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Showers: vertex effects


•  2 events: same momentum transfer at the vertex


•  Additional source of variation:

•  Composition of the cascade

•  Energy/momentum of recoil nucleus
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Principles


•  Muons

•  Energy: estimate using true muon track length

•  Direction: use a linear fit to the track


•  Showers:

•  Energy: estimate using total detected photons

•  Direction: mean photon direction – using direct photons 

only.

•  Assumptions: always make optimistic ones!


•  Know where photons come from

•  Perfect vertex reconstruction

•  Do not model detector effects
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MUON TRACK FLUCTUATIONS




Muons: energy (method) 

•  Muon energy - estimate it through the tracklength 

•  ‘MUSIC’: muon tracking in km3 
•  output muon track information for many events 

•  Run muons of a given energy, record tracklength 

8
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ΔL = L − 4.25 E
1 GeV

Black: data 
Blue: gauss fit 1 
Red: gauss fit 2 

ΔL

•  Fit using gaussians: use 
•  central peak (fit 1) 
•  all data (fit 2) 
•  Simple root mean square 

Courtesy J. 
Hofestädt 



•  Intrinsic spread from physical fluctuations 

•  Approximately 8% muon energy resolution 

Muons: energy (results) 

9


ΔE = ΔL
4.25 m

Black: rms 
Blue: width 1 
Red: width 2 
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Muons: direction (method)


•  How straight are muon tracks?

•  Run 2000 muons over 0-20 GeV range with GEANT 3.21

•  Get x(z) and y(z) with simple linear fit

•  Obtain angular offset
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Courtesy M. Pleinert 

θ = cos−1 v̂ fit ⋅ ẑ( )



Muons: direction (results)


•  Estimation of intrinsic variation:


•  10 GeV muons: ~4o intrinsic error

•  Work still needed to characterise this (true dist 2D)
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SHOWER FLUCTUATIONS




Showers: definitions


•  Outgoing particles:

•  Boson (B) + target (T) -> remnant (R) + energetic particles (P)

•  Target T and remnant R invisible

•  W/Z properties – you want to reconstruct these!


•  Define ‘shower’ energy/momentum via the W/Z 
properties


B+T− > R+P

W,Z

T

R

P

R: Lost information 

run through sim 

*random target orientation and ~no coupling to e.g. magnetic moment of target 
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Simulations


•  Events from gSeaGen (12000)

•  0-30 GeV range (Es=yEnu)

•  100 events per GeV (randomly selected)

•  4 classes: NC/CC and Muon/Electron neutrinos

•  Ignore leptons in CC events


•  Simulations

•  GEANT 3.21

•  Repeat 50 times for each of 12,000 events

•  Record photon statistics (number and direction)


•  Analysis

•  Fit fluctuations within and between events

•  Energy error: total number of photons

•  Direction error: mean photon direction
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Results: errors in energy resolution


•  Each point: mean of 50 runs for each vertex

•  Error bars: variation within these 50
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Total intrinsic variation: shower energy

•  Repeat for \nu_mu and CC/NC events


•  Fractional error in emitted photons ~ fractional 
error in energy reconstruction


•  1 GeV showers: ~50% energy resolution

•  10 GeV showers: ~20% energy resolution
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Results: direction (‘vertex’ variation    )


•  1 point per vertex (mean over 50 runs)

•  Plot offset of this mean from the z-axis


•  Fit: 34 degrees at 1 GeV, 3.4 degrees at 10 GeV
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Results: direction (cascade variation   )


•  Each point: variation of 50 runs about mean


•  1 GeV: ~20 degrees

•  10 GeV: ~6 degrees
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Total intrinsic variation:

•  Repeat for \nu_mu and CC/NC events


•  Fits statistically identical: no plans to repeat for anti-
neutrino events.


•  You will not be able to reconstruct showers better than 
this – even if you detect every single photon.
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DETECTOR LIMITATIONS


How are we limited by not detecting every photon? 



20m 

h=
6m

 

Detector Response


•  What is the mean photocathode density 
in the ocean?

•  Mean PMT effective area:

•  PMT density for contained events:
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Result: chance of detecting any given photon


•  Probability of:

•  any detection (energy reco):

•  direct detection (direction reco):
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Detector energy uncertainty


•  How many shower photons get detected?


•  Energy error >= Poisson error

•  Assumes 100% identification of shower hits, ignores 

detector clumpiness,…
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Results – shower energy reco


•  Comparison: intrinsic, ORCA, total


•  Conclude:

•  Energy reco: intrinsically limited

•  Perhaps a sparser detector would be best?
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Detector limits: direction


•  Shower direction: average direction of all direct photons

•  How well can we estimate the mean?
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Results – shower direction reco


•  Comparison: intrinsic, ORCA, total


•  Conclude:

•  Directional reco: detector effects significant

•  A denser detector would help
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What use is this?


•  Compare to current reconstruction efforts

•  How close is your method to ‘perfect’?


•  Use to influence detector design

•  Are we detector-limited or physics-limited?


•  Determine limits to mass hierarchy sensitivities
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Incorporation into sensitivity plots: 

•  Current situation: 
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Incorporation into sensitivity plots: 

•  Sketch of the future: 
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Summary of status


•  Physics is random – and this is important!

•  Affects energy and directional reconstruction

•  Effects estimated for muon tracks and showers


•  Best-case ORCA reference detector estimated

•  Event reconstruction will be limited by detected photon 

information


•  Next steps:

•  Do this for electromagnetic cascades (Nu_e CC)

•  Obtain fits for muon track events

•  Produce sensitivity estimates
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