

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation

NuMI Beam

MINERvA

Experiment

CCQE Results
CCIncPion

Status

Conclusion

Neutrino Physics Results at MINERvA

Carrie McGivern
On behalf of the MINERvA Collaboration

University Of Pittsburgh

May 14, 2013

mcgivern@fnal.gov

Outline this is the way it's going to go...

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation

NuMI Beam

MINERvA Experiment

CCQE Results

CCIncPion Status

Conclusion

- Motivation
- NuMI Beam and the MINERvA Experiment
- Charged Current Quasi-Elastic (CCQE) Results fresh off the presses
- Status of the CC Inclusive Pion analysis

Motivation want are we trying to learn here?

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

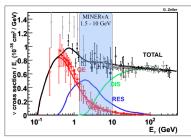
Outline

Motivation

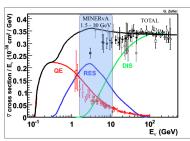
NuMI Beam

MINERvA Experiment

CCQE Results


CCIncPion

Conclusion


Main INjector ExpeRiment v-A

- measure the cross sections of neutrino-nucleus interactions
- Cross sections between 0.1-10 GeV not as well known, but important in the regime of oscillation experiments

Neutrinos

Anti-Neutrinos

J.A. Formaggio and G.P. Zeller, Rev. Mod. Phys. 84, 1307-1341, 2012

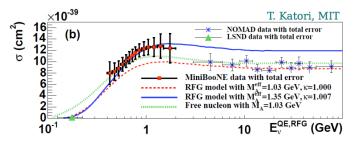
Motivation want are we trying to learn here?

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation
NuML Beam


MINERvA

CCQE Results

CCIncPion

Conclusion

- Do not understand the energy dependence in the CCQE cross section
 - MiniBooNE and SciBooNE disagree with the higher energy NOMAD data, MINERvA is in the energy range that can help resolve this discrepancy
 - Primary signal in the oscillation experiments

Additionally, neutrinos make for a good weak-interaction probe of the nuclear structure

NuMI Beam Neutrinos at the Main Injector

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

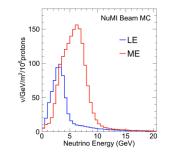
Outline

Motivation

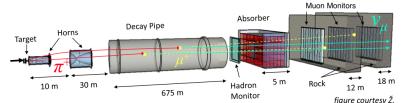
NuMI Beam

MINERvA Experimen

CCQE Results


CCIncPion Status

Conclusion


 120 GeV proton beam from the Main Injector

- Average spill of 35x10¹²
 Protons on Target (POT), with a beam power of 300-350 kW at ~0.5 Hz
- Advantages tunable beam
 - Can change the energy of the beam by moving the target wrt the horns
 - Neutrino or anti-neutrino beam mode depending on horn current

FLUKA: A. Ferrari, P.R. Sala, A. Fasso`, and J. Ranft, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773

Pavlović

NuMI Beam low energy (LE) beam flux

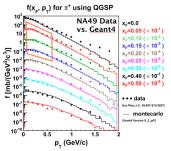
IceCube Particle Astrophysics Symposium 2013

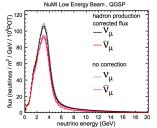
C.L. McGivern

Outline

Motivation

NuMI Beam


MINERvA Experimen


CCQE Results

CCIncPion

onclusio

- Neutrino flux is estimated from hadron production
 - Monte Carlo (MC) is reweighted to match NA49 data
 - Flux is then calculated using the GEANT4 simulator
 - Uncertainties due to the NA49 data and hadron production models are included as systematics

The Collaboration

Particle **Astrophysics**

C.L. McGivern

Outline

Motivation

NuMI Beam

MINERVA Experiment

CCQE Results

CCIncPion

Conclusion

\sim 80 collaborators from nuclear and particle physics

University of Athens University of Texas at Austin Centro Brasileiro de Pesquisas Físicas University of Chicago Fermilab University of Florida Université de Genève Universidad de Guanajuato Hampton University Inst. Nucl. Reas. Moscow Mass. Col. Lib. Arts Northwestern University

Otterbein University Pontificia Universidad Catolica del Peru University of Pittsburgh University of Rochester Rutgers University Tufts University University of California at Irvine University of Minnesota at Duluth Universidad Nacional de Ingeniería Universidad Técnica Federico Santa María William and Mary

The Detector

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation

NuMI Beam

MINERvA Experiment

CCQE Results

CCIncPion

Conclusion

- 120 "modules" perpendicular to the beam direction, containing ∼32k readout channels
- Finely-segmented scintillating central tracking region
- Nuclear targets, plastic (CH), EM and Hadronic calorimeter with additional lead and steel plates
- Minos near detector doubles as a muon spectometer

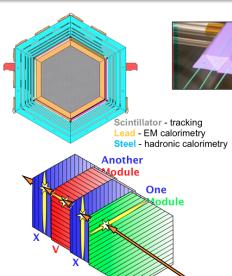
The Detector in more detail

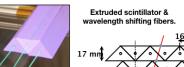
IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

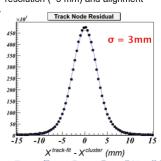
Outline

Motivation


NuMI Beam


MINERvA Experiment

CCQE Results


CCIncPion

Conclusion

Charge sharing for improved position resolution (~3 mm) and alignment

Data Collected big THANKS to the Accelerator Division at Fermilab!!

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation

NuMI Beam

MINERvA Experiment

CCQE Results

CCIncPion Status

Conclusio

- 4.0×10^{20} POT in ν -mode
- 1.7×10^{20} POT in $\bar{\nu}$ -mode

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation

NuMI Beam

MINERvA

MINERVA Experiment

CCQE Results

CCIncPior

Conclusion

Charged Current Quasi-Elastic Results

Charged Current Quasi-Elastic Results released just last week!

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

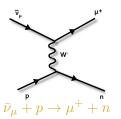
Motivation

NuMI Beam

MINERvA Experimen

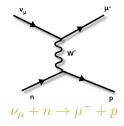
CCQE Results

CCIncPion Status


Conclusion

Signal

muon track and energy deposition (recoil) that is consistent with a neutron (proton)


Backgrounds : non-CCQE $\bar{\nu}$ interactions, ν interactions with a mis-reconstructed charge, and rock muons that originate from outside of the detector

arXiv:1305.2234 [hep-ex]

- Nov. 2010 Feb. 2011
- Uses 1.01 x 10²⁰ POT

arXiv:1305.2243 [hep-ex]

- Mar. 2010 Jul. 2010
- Uses 9.42 x 10¹⁹ POT

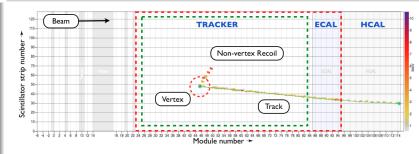
CCQE Event Selection

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation


NuMI Beam

MINERvA Experimen

CCQE Results

CCIncPion

Conclusion

Anti-Neutrinos

- MINOS-matched μ⁺ track
- Reconstructed vertex in central fiducial volume
- ≤ 1 isolated energy shower outside of vertex region (10 cm)
- $\begin{tabular}{ll} \blacksquare & {\sf Reconstructed} \ Q^2_{QE} \mbox{-dependent recoil energy} \\ & {\sf cut} \ \mbox{that excludes the vertex region} \\ \end{tabular}$
- \rightarrow 16,467 events, 54% efficiency, 77% purity

Neutrinos

- MINOS-matched μ⁻ track
 - Reconstructed vertex in central fiducial volume
- ≤ 2 isolated energy showers outside of vertex region (30 cm)
- $\begin{tabular}{ll} \blacksquare & {\sf Reconstructed} & Q^2_{QE} \mbox{-dependent recoil energy} \\ {\sf cut} & {\sf that} & {\sf excludes} & {\sf the} & {\sf vertex} & {\sf region} \\ \end{tabular}$
- → 29,620 events, 47% efficiency, 49% purity

CCQE Kinematic Distributions

anti-neutrino reconstructed $E^{QE}_{
u}$ and Q^2_{QE} distributions

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

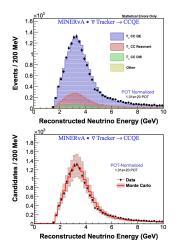
Outline

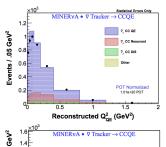
Motivation

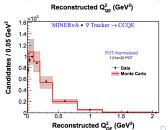
NuMI Beam

MINERvA Experimen

CCQE Results


CCIncPion Status


Conclusion


Assume a bound nucleon at rest with a fixed binding energy (E_b)

$$E_{\nu}^{QE} = \frac{m_n - (m_p - E_b)^2 - m_{\mu}^2 + 2(m_p - E_b)E_{\mu}}{2(m_p - E_b - E_{\mu} + p_{\mu}\cos(\theta_{\mu}))}$$

$$Q_{QE}^{2} = 2E_{\nu}^{QE}(E_{\mu} - p_{\mu}cos(\theta_{\mu})) - m_{\mu}^{2}$$

CCQE Kinematic Distributions

neutrino reconstructed $E^{QE}_{
u}$ and Q^2_{QE} distributions

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

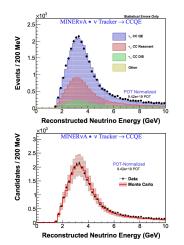
Outline

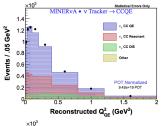
Motivation

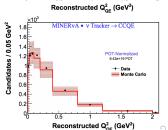
NuMI Ream

MINERvA Experimen

CCQE Results


CCIncPion Status


Conclusion


Assume a bound nucleon at rest with a fixed binding energy (E_b)

$$E_{\nu}^{QE} = \frac{m_n - (m_p - E_b)^2 - m_{\mu}^2 + 2(m_p - E_b)E_{\mu}}{2(m_p - E_b - E_{\mu} + p_{\mu}\cos(\theta_{\mu}))}$$

$$Q_{QE}^2 = 2E_{\nu}^{QE}(E_{\mu} - p_{\mu}cos(\theta_{\mu})) - m_{\mu}^2$$

CCQE Systematic Uncertainties anti-neutrino

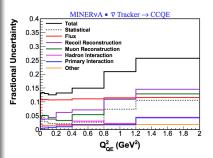
IceCube Particle Astrophysics Symposium 2013

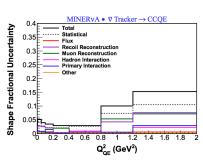
C.L. McGivern

Outline

Motivation

NuMI Beam MINERVA


MINERVA Experiment


CCQE Results

CCIncPion Status

Conclusion

- Estimate by varying systematic inputs within uncertainties and then rerun the analysis
 - Look at shape of systematics to help reduce the impact of several uncertainties (i.e. neutrino flux)

Leading systematics due to neutrino flux, recoil reconstruction, muon reconstruction, hadron interaction, and ν interaction model

CCQE Systematic Uncertainties

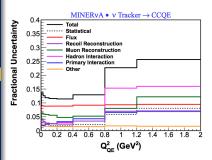
IceCube Particle Astrophysics Symposium 2013

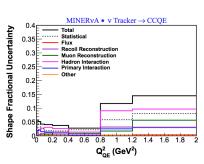
C.L. McGivern

Outline

Motivation

NuMI Beam MINERVA


MINERVA Experiment


CCQE Results

CCIncPion Status

Conclusion

- Estimate by varying systematic inputs within uncertainties and then rerun the analysis
- Look at shape of systematics to help reduce the impact of several uncertainties (i.e. neutrino flux)

Leading systematics due to neutrino flux, recoil reconstruction, muon reconstruction, hadron interaction, and ν interaction model

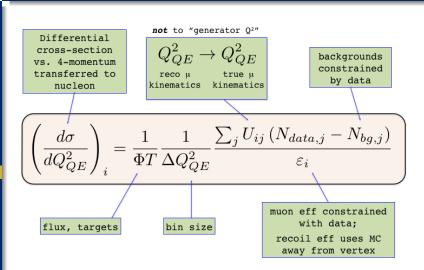
CCQE Differential Cross Section in bins of $\mathsf{Q}^2_{\mathit{QE}}$

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation


NuMI Beam

MINERvA Experimen

CCQE Results

CCIncPion Status

onclusio

Courtesy of D. Schmitz

CCQE Differential Cross Section

IceCube Particle Astrophysics

C.L. McGivern

Outline

Motivation NuMI Beam 20<u>×1</u>0⁻³⁹

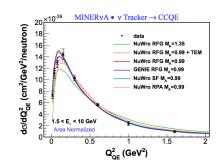
18

16

MINERVA

CCQE Results

CCIncPion Conclusion dσ/dQ_{વ∈} (cm²/GeV²/proton) NuWro RFG M,=0.99 GENIE RFG M, =0.99 10 NuWro SF M,=0.99 NuWro RPA M, =0.99 0.5


MINERvA • ▼ Tracker → CCOE

NuWro RFG M.=1.35

NuWro RFG M,=0.99 + TEM

 Subtract background by fitting recoil energy distribution in bins of Q_{OE}^2 to MC shape background templates

- Unfold the reconstructed Q_{OE}^2 to estimate the true distribution
- Apply efficiency x acceptance corrections to the MC

GENIE: www.genie.org. NIM A614, 87 (2010)

Q_{OF} (GeV²)

NuWro: Acta Phys. Polon. B40, 2507 (2009)

TEM = "Transverse Enhancement Model", A. Bodek, et al., Eur., Phys. J. C71 1726 (2011).

CCQE Differential Cross Section ratio compared to GENIE

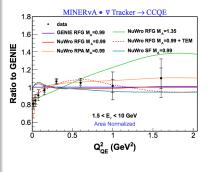
Particle
Astrophysics
Symposium
2013

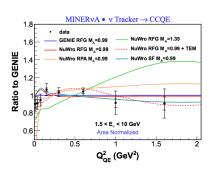
C.L. McGivern

Outline

Motivation

NuMI Beam


MINERvA Experiment


CCQE Results

CCIncPion Status

Conclusion

Consistent with the RFG $M_A = 0.99 + TEM$ model

GENIE: www.genie.org, NIM A614, 87 (2010)

NuWro: Acta Phys. Polon. B40, 2507 (2009)

TEM = "Transverse Enhancement Model", A. Bodek, et al., Eur. Phys. J. C71 1726 (2011)

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation

NuMI Beam

MINERvA

Experiment

CCQE Results

CCIncPion Status

Conclusion

Charged Current Inclusive Pion Status

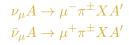
Charged Current Inclusive Pion Status

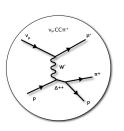
IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

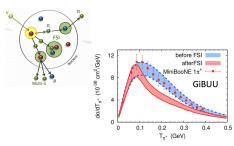
Outline

Motivation


NuMI Beam


MINERvA Experiment

CCQE Results


CCIncPion Status

onclusion

MiniBooNE does not favor models with final state interactions (FSI)

Event Selection

- Vertex is reconstructed in scintillator tracker fiducial volume
- MINOS-matched muon track with appropriate charge
- At least one hadron track from primary vertex, not matched to the muon track, and is consistent with a stopping pion

CC Inclusive Pion Status reconstructed pion energy distribution

IceCube Particle Astrophysics Symposium 2013

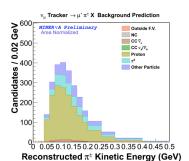
C.L. McGivern

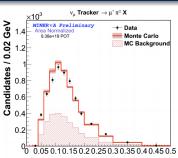
Outline

Motivation
NuMI Beam

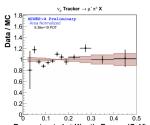
MINERvA

Experimen


CCQE Results


CCIncPion Status

Conclusior


Use 25% of available data

 Look at area normalized distributions to compare shapes, helps to reduce flux systematic errors

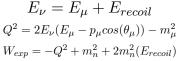
Reconstructed π^{\pm} Kinetic Energy (GeV)

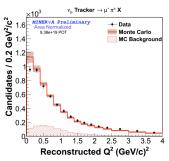
CC Inclusive Pion Status

reconstructed Q^2 and W_{exp} distributions and what's next to come...

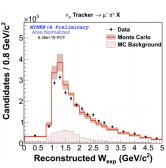
IceCube Particle Astrophysics

C.L. McGivern


Outline


Motivation NuMI Beam

MINERVA


CCQE Results

CCIncPion Status

Resolution $Q^2 \sim 25\%$ $W_{exp} \sim 10\%$

- Study pion identification to help reduce background further
- Use unfolding to apply detector resolution corrections and also apply efficiency corrections
- Estimate hadron reconstruction systematic uncertainties

Conclusion

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Outline

Motivation
NuMI Beam

MINERvA

Experiment

CCQE Results

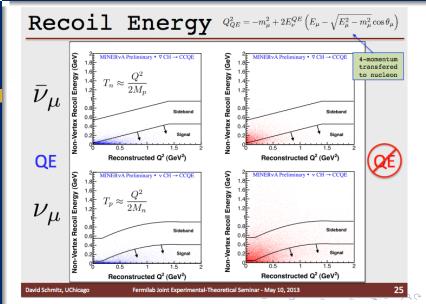
CCIncPion

Conclusion

- Currently putting a lot of effort into physics analyses
 - Charged current inclusive cross sections
 - Pion production cross sections
 - Inclusive cross section vs. various nuclei: He, C, O, Fe, Pb
 - Strangeness production cross sections
 - Structure functions
 - and much more...
- MINERvA will continue to run during the Nova-era medium energy beam
- Lots of exciting results to come!

IceCube Particle Astrophysics Symposium 2013

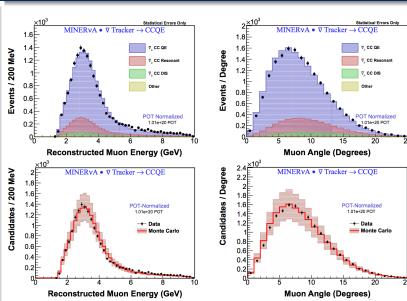
L. McGiverr


Backup Slides

Recoil Energy vs. Q_{QE}^2

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

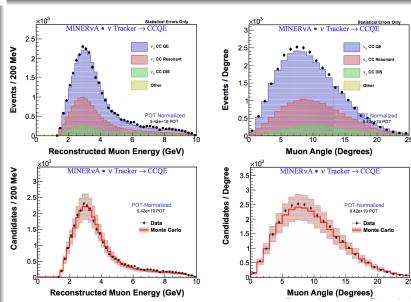


CCQE Kinematic Distributions

anti-neutrino muon distributions

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

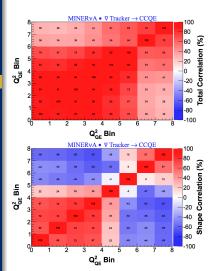


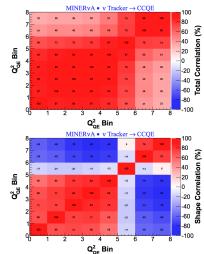
CCQE Kinematic Distributions

neutrino muon distributions

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern





CCQE Systematic Uncertainty Correlation Matrices

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

Cross Section Models for comparison

IceCube Particle Astrophysics Symposium 2013

C.L. McGivern

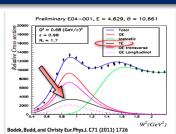
Backup Slides

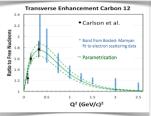
Interpretation #1: $d\sigma/dQ^2$ Shape

- Models that introduce nuclear correlations of various kinds tend to modify the QE cross-section as a function of Q² (for a given v energy spectrum)
- · The models:
 - Relativistic Fermi Gas (RFG), M_A = 0.99 GeV/c²
 - The canonical model in modern event generators used by all neutrino experiments
 - Relativistic Fermi Gas (RFG), M_A = 1.35 GeV/c²
 - Motivated by recent measurements where this change was fairly successful at reproducing data
 - Nuclear Spectral Function (SF), M_A = 0.99 GeV/c²
 - More realistic model of the nucleon momentum energy relationship than standard RFG
 - Transverse Enhancement Model (TEM), M_A = 0.99 GeV/c²
 - Empirical model which modifies the magnetic form factors of bound nucleons to reproduce an enhancement in the transverse cross-section observed in electron-nucleus scattering attributed to the presence of meson exchange currents (MEC) in the nucleus

Bodek, Budd, Christy, Eur. Phys. J. C 71:1726 (2011), arXiv:1106.0340

Transverse Enhancement Model courtesy of G. Perdue, APS 2013 talk


IceCube Particle Astrophysics Symposium

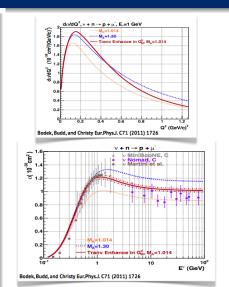

C.L. McGivern

Backup Slides

Transverse Enhancement

- The sort of model experimenters love it may or may not be right, but it matches data (MiniBooNE - NOMAD).
 - Theorists often prefer being right to matching data.
- Modify only vector magnetic form factors with e⁻ scattering data - everything else is single free nucleon.
- e scattering data suggests only the longitudinal portion of the QE x-section is ~universal free nucleon response function - the transverse component shows an enhancement relative to this approach.

Fit to electron scattering data from JUPITER (JLab E04-001) to extract enhancement as a function of Q².



Transverse Enhancement Model courtesy of G. Perdue, APS 2013 talk

IceCube Particle Astrophysics

C.L. McGivern

Backup Slides

Transverse Enhancement

- \circ d σ /d O^2 w/ M_A = 1.014 GeV & TEM is very similar to the result for $M_A = 1.3$ GeV for $O^2 < 0.6$ (GeV/c)².
- For high Q², the TEM contribution is small.
- · Experiments at high energy often remove low Q2 values from their M_A fits - predict an even lower MA due to steep slope for $d\sigma/dO^{2}$ at $M_{A} = 1.014$ GeV.

Gabriel N. Perdue

The University of Rochester