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• Many anomalies in ν physics can be collectively explained 
by existence of eV-scale sterile ν:

New Physics: Sterile Neutrinos

T. Lasserre, Neutrino 2012

LSND anomaly
PRD 64 (2001) 112007, etc. MiniBooNE anomaly

PRL 102 (2009) 101802, etc.

Gallium anomaly
PRC 73 (2006) 045805, etc.

Combined Parameter Space
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Combined Parameter Space
arXiv:1109.4033 [hep-ph]
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• Main impetus: re-calculation of reactor flux predictions
• Flux prediction increased by 3.5%, much from new nuclear information

• Other smaller corrections increase prediction:
• New neutron lifetime measurement (+1%)

• Proper treatment of non-equilibrium reactor isotopes (+1%)

• Near-agreement between measurements, prediction 
becomes 5.7% measurement deficit!

• How to double-check this deficit’s cause?

The Reactor Antineutrino Anomaly
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θ13 Experiments: Absolute Flux
• Upcoming absolute checks on reactor anomaly from 

Daya Bay and RENO (sooner), Double Chooz (later)

• Better statistics and systematics than previous SBL exps.
• O(1%) level uncertainty, along with from 2.7% reactor flux prediction uncertainty

???

???

Adapted from M. Cribier, et. al, PRD 83 (2011) 073006

Adapted from PhD Thesis, B. Littlejohn Flux Prediction 2.5 - 3.5
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Opportunities at Research Reactors 
• Need a definitive MeV-scale very short-baseline (VSBL) test

• Absolute reactor flux checks are good, but not good enough

• US research reactors provide
a venue for oscillation searches 
at shortest-ever reactor baselines

Need
More

Experiments
Here!
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Very-Short-Baseline Reactor Signal

• Detect reactor neutrinos via
inverse beta decay interaction
in liquid scintillator detector

• Look for spectral distortions in
position, energy

• Characteristic L/E 
oscillation pattern

Oscillated:
Δm2 = 1.8 eV2

sin22θ = 0.5
Unoscillated

30% Efficiency

15cm position
resolution

10%/Sqrt(E) 
Energy 

Resolution

Oscillated:
Δm2 = 1.8 eV2

sin22θ = 0.1

Heeger, Mumm, Tobin, BRL
PRD D87 (2013)

One 3x1x1 m3 detector, 1m3 20 MW HEU core, 4m closest distance
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Important Variables
• Many important aspects in observing

 these oscillations:
• Position and energy resolution

• Detector position and length

• Core size

• Backgrounds

• Statistics
Possible Background Spectra

Segmented design for
necessary position and 
energy resolution

Heeger, Mumm, Tobin, BRL
PRD D87 (2013)
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Important Variables: Two Detectors
• Significant benefits using multiple detector

 deployments and increased L/E coverage
• Example: 3m long detectors at 4 and 15 m closest distances 

 Heeger, Mumm, BRL
In Preparation

9Tuesday, May 14, 13



How Many Sterile Neutrinos?

• Sensitive to 
3+2 oscillations

• Can distinguish
3+1 from 3+2

]2 [eV41
2mΔ

-110 1

]2
 [e

V
512

m
Δ

-210

-110

1

e5 = U
e4

3+2 Sensitivity, With U
 CL, Osc=0.05σ2 Detectors, 3
 CL, Osc=0.06σ2 Detectors, 3
 CL, Osc=0.07σ2 Detectors, 3
 CL, Osc=0.08σ2 Detectors, 3
 CL, Osc=0.09σ2 Detectors, 3
 CL, Osc=0.1σ2 Detectors, 3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

O
sc

/U
no

sc

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02

23+2, 1 year, 2.50, 0.35 eV
23+1 Prediction, 2.50 eV

Baseline/Energy (m/MeV)
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

3+
2 

3+
1 

D
iff

er
en

ce

-0.04
-0.02
0.00
0.02
0.04

BRL, Heeger, Mumm,
In Preparation

10Tuesday, May 14, 13



A Two-Detector Oscillation Experiment
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Comparison
of US Sites

Comparing
Various NIST

Configurations

Heeger, Mumm, Bowden, Cherwinka, BRL

• Capable of ruling out most
suggested parameter space
• Feasible at three US sites

• Can be built in phased approach
• On a shorter timescale, given relatively 

simple detector design

• Relatively cost effective: small detectors, free νe!

• Competitive in the
international context
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Proposed Deployment: NIST
• Engineering and space considerations allow a 

moveable ton-scale detector deployment at ~4 meters
• Additional larger detector at further distances

12Tuesday, May 14, 13



Proposed Deployment: NIST
• Engineering and space considerations allow a 

moveable ton-scale detector deployment at ~4 meters
• Additional larger detector at further distances

Heeger, Mumm, Cherwinka
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Scientific Opportunities
• Searches for new physics

• Searching for sterile neutrino oscillations
at short baselines

• Reactor physics

• Precise spectral measurement 
of neutrinos from highly enriched 
uranium core (U-235 neutrinos)

• Investigate research reactor
enrichment conversion (low to hi)

• Detector Development

• Demonstration of on-surface antineutrino detection

• Synergies with applied antineutrino physics
and non-proliferation communities

• Development of scintillators for neutron
detection: pulse-shape discriminating Li-LS, Gd-LS
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R&D Status: Detector Simulation

• Geant4-based detector simulation:
Segmented LiLS or GdLS detector

• Beginning to investigate 
detector response:
• Light yield and its uniformity

• Prompt, delayed efficiencies

• Energy, position resolution

• Topology, PSD cuts

• Beginning to study detector
requirements, optimizations
• Detector size, cell size

• Cell separator thickness (dead volume)

• PMT and LS properties

• Calibration program

Provided by T. Classen
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R&D Status: Background Measurements
• Performing gamma, muon, and neutron measurements

• Have specialized detectors for each particle type

• Full survey of detector area in May 2013 for all three particle types

Gamma spectra: reactor-on and reactor-off

 Provided by 
P. Mumm

Muon Detector

Neutron Detector: FANS-I

Gamma Spectrometer
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R&D Status: Background Simulations

• Neutron shielding studies: MCNP
• Tie in with Geant4 simulation eventually

• Cosmics studies: CRY + Geant4

• Time correlated background
simulations from previous US
non-proliferation efforts
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Cosmic Muon Traversing Detector

Provided by 
T. ClassenProvided by 

P. Mumm

Provided by 
N. Bowden

17Tuesday, May 14, 13



Current US Interest Group

26 individuals;
12 institutions
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Summary

• US research reactors provide an opportunity for a   
high-precision, short-baseline reactor experiment

• This experiment can definitively address the reactor 
anomaly and the light sterile neutrino hypothesis

• This experiment additionally offers a broad range of 
other new physics opportunities and applications

• US interest group is developing a conceptual design 
and has begun detector and background R&D efforts
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Backup
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Experimental Parameters
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Compare to Bugey III

22Tuesday, May 14, 13



Sterile Neutrinos With Planck?
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Sterile Neutrinos With Planck?
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International Context
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International Context
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International Context
arXiv:1304.3696DANSS (DANSSino)
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More 3+2: Interference

• Destructive interference reduces
sensitivity for particular sterile
 mass-squared splitting
 combinations 

• Especially when first oscillation
period’s amplitude is suppressed
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In Preparation
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More 3+2: Unequal Mixing

• Also have investigated unequal mixing to different 
sterile states
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