CTA & The Future of High-Energy Gamma-Ray Astronomy

- ♦ CTA Concept
- \diamond γ -Ray Science & ν Connections
- ♦ Status, Plans, & Schedule

Brian Humensky, for the CTA Consortium* Columbia University May 14, 2013

*http://www.cta-observatory.org/

Detecting VHE (E > 30 GeV) Y-rays:

Imaging Atmospheric Cherenkov Technique

Y-rays interact with the atmosphere at a height of 15-30 km above ground ♦ Creates an air shower of cascading interactions over 10 km in length

Image the air shower with multiple telescopes to determine the direction and energy of the Y-ray

- ♦ Ground-based detection
 - \circ Energy range ~30 GeV 100 TeV
 - Cherenkov light pool area of $\sim 10^5 \text{ m}^2$

2

see also Trevor Weekes: *TeV Gamma-Ray Astronomy*

Characteristics of current generation of IACTs

 \diamond Energy threshold ~ 25 to ~100 GeV.

- ♦ Point-source integral flux sensitivity: 0.7 to 1.0 % of the Crab Nebula flux in 50 h (~10⁻¹² cm⁻² s⁻¹ above 300 GeV).
- ♦ Above 300 GeV, ~100 times more sensitive in 50 hours than Fermi-LAT in 1 year - for a given source.
- \diamond Gamma-ray FoV ~ 3° 5° diameter.
- \diamond Angular resolution ~ 0.1°.
- ♦ Energy resolution $\approx 15\%$.

Water Cherenkov: see Jordan Goodman: *Results from Milagro and Status of HAWC*

From current arrays to CTA

Light pool radius R \approx 100-150 m \approx typical telescope spacing

Sweet spot for best triggering and reconstruction: Most showers miss it!

> Large detection area – More images per shower Lower trigger threshold

CTA Concept

Science optimization under budget constraints:

- \checkmark Array area increases with γ energy.
- \checkmark Mirror area decreases with γ energy.

for lowest energies (~20 GeV – 1 TeV): few large telescopes

4 LSTs

~km² array of medium-sized telescopes for the 100 GeV to 10 TeV domain.

~25 MSTs +

large array of small telescopes, sensitive about few TeV 7 km² at 100 TeV -36 SCTs extension

70 SSTs

Extending the Mid-Size Array

Figures: Slava Bugaev

Color scale: number of triggered telescopes for 500 GeV showers

US focus: maximizing performance in core energy range of IACT technique.

- \diamond Want:
 - Effective Area dominated by contained showers.
 - Increase typical event multiplicity & image quality to improve shower characterization.
- \diamond Implies:
 - Contribution of 36 additional telescopes.
 - Developing novel Schwarzschild-Coude design w/ secondary mirror & excellent angular resolution.

CTA: Cherenkov Telescope Array

One observatory with two (asymmetric) sites for all-sky coverage operated by one consortium.

Southern Array

- ♦ Full energy and sensitivity coverage: some 10 GeV to above 100 TeV.
- ♦ Angular resolution: $0.02^{\circ}-0.2^{\circ}$.
- \diamond Large field of view.

Galactic + Extragalactic

Northern Array

- ♦ Complementary to SA for full sky coverage.
- ♦ Energy range: some 10 GeV to few TeV.
- \diamond Limited field of view.

Mainly Extragalactic

Site candidates

Two sites to cover full sky at 20° – 30° North, South.
➤ To be selected in Fall 2013

CTA Telescope Designs

large-sized telescope (28 m diameter reflector)

11

medium-sized telescope (12 m diameter reflector)

medium-sized telescope (SC) (10 m primary, 5 m secondary)

- now design led by LIC groups
- new design led by US groups
- provides wide field of view
- MRI funded prototype

small-sized telescope (4 m diameter primary)

Schwarzschild-Couder Telescopes

by design provides large field of view (8-9°) and compact camera (SiPM detectors) (0.07° x >11,000 pixels and high QE)

primary mirror: 9.7 m diameter secondary mirror: 5.4 m diameter

SC prototype with reduced secondary mirror and camera -> begin construction in 2014

propose: 36 SC telescopes at Southern CTA site

location of prototype SC telescope: VERITAS site at Mt Hopkins, AZ

Telescope Parameters

	SST "small"	MST "medium"	LST "large"	SCT "medium 2-M"
Number	70 (S)	25 (S) 15 (N)	4 (S) 4 (N)	36 (S)
Spec'd range	> few TeV	200 GeV to 10 TeV	20 GeV to 1 TeV	200 GeV to 10 TeV
Eff. mirror area	> 5 m²	> 88 m²	> 330 m²	> 40 m ²
Field of view	> 8°	> 7°	> 4.4°	> 7°
Pixel size ~PSF θ ₈₀	< 0.25°	< 0.18°	< 0.11°	< 0.075°
Positioning time	90 s, 60 s goal	90 s, 60 s goal	50 s, 20 s goal	90 s, 60 s goal
Availability	> 97% @ 3 h/week	>97% @ 6 h/week	>95% @ 9 h/week	>97% @ 6 h/week
Target capital cost	420 k€	1.6 M€	7.4 M€	2.0 M€

Differential Sensitivity (in units of Crab flux)

for detection in each 0.2-decade energy band

T. Jogler et al. 2012, proceedings of Gamma2012, Heidelberg (arXiv: 1211.3181)

γ-Ray Science & v Connections

Seeing the High-Energy Universe with the Cherenkov Telescope Array – The Science Explored with the CTA

Special Issue:

ASTROPARTICLE PHYSICS Volume 43 (2013) 1-350

The CTA Consortium + O(20) scientists canvasing relevant fields

Overview articles + Case studies

ASTROPARTICLE PHYSICS

SciVerse ScienceDirect

http://www.elsevier.com/locate/astropar

Key Science Issues

Where and how are particles accelerated in our Galaxy and beyond?
What makes black holes of all sizes such efficient particle accelerators?
The flaring sky: short-timescale phenomena at very high energies?

♦ What do high-energy gamma-rays tell us about the star formation history of the Universe and the fundamental laws of physics?
♦ What is the nature of dark matter?
♦ What surprises will we see?

Main Characteristics of CTA

High sensitivity.

- >4 orders of magnitude dynamic range in flux between strongest and faintest sources.
- □Wide spectral range.
- ♦>4 orders of magnitude coverage in energy, up to 100s of TeV.
- \Rightarrow 10-15% energy resolution.
- Resolved source morphology.
- \diamond Angular resolution as good as 0.02°.
- \diamond Source localization to 10 20".

UWell-resolved light curves.

- Minute-scale variability of AGN.
- □ Large field of view.
 - > Serendipitous discoveries.
- □ Surveying capabilities.
 - Full-sky survey at O(1%) Crab
 in about 1 year.
- □Monitoring capabilities.
 - > Use sub-arrays for AGN monitoring.

The VHE Gamma-ray Sky

© TeVcat (20/Sept/2012)

~150 Sources

Science Potential

- Current instruments have passed the critical sensitivity threshold and reveal a rich panorama, but this is clearly only the tip of the iceberg
- What big science questions remain ?

Science with γ 's and ν 's

Gamma Rays and Neutrinos are both neutral messengers from the sites of cosmic-ray acceleration.

Presence of VHE neutrino emission is an unambiguous signature of hadronic particle acceleration.

 $p + \gamma \rightarrow \Delta^+ \rightarrow \pi^0 + p$ and $p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n$.

$$\pi^+
ightarrow
u_\mu + \mu^+
ightarrow
u_\mu + (e^+ +
u_e + \overline{
u}_\mu)$$

♦ Breaks degeneracy between models of electromagnetic emission!

♦ IceCube is uniquely sensitive to the presence of very high energy charged particles in environments where the opacity for charged particles and gamma rays is high!

Understanding Nature's Particle Accelerators

♦ Growing indirect, direct evidence for acceleration of hadronic CRs in SNRs,

 \diamond Extragalactic CRs:

 \diamond Acceleration sites

- GRBs? AGNe?

- but \diamond Maximum energy?
 - SNR population responsible for bulk of Galactic CRs?
 - Injection, acceleration, confinement/escape, diffusion into ISM...

Supernova Remnant Studies with CTA

IC 443: CTA simulated spectra (blue points), 50 hrs.

Morphology studies with CTA:
(left) RX J1713.7-3946 from 50 hr data
using XMM image as template
(below left) RX J1713 actual distance (1 kpc)
(below right) RX J1713 at a distance of 4 kpc

Supernova Remnants (& More): Population Studies

HESS

CTA

Current Galacti VHE sources (v * CTA as ultimate survey machine

* CTA as ultimate flare machine

at 25 GeV, for flares 10000 times more sensitive than Fermi

* Coherent fullsky coverage from two sites

Supernova Remnants: Resolving Features

Quick Hits: Galactic Plane Survey

Quick Hits: Simulated GRB (E > 30 GeV)

Simulation of GRB 080916C seen by GBM + LAT

from

Gamma-Ray Burst Science in the Era of Cherenkov Telescope Array (Astroparticle Physics special issue article) Susumu Inoue et al.

Quick Hits: Flaring AGN / Radio Galaxies

- ♦ Low threshold, high sensitivity → probe much shorter variability time scales than existing instruments.
- ♦ Ex: PKS 2155-304 flare seen by H.E.S.S. in 2006:
 - ♦ Shortest measured variability scale 173 ± 28 sec.
 - $\Rightarrow CTA can reach 25 \pm 4 sec.$
 - ♦ For Doppler factor of 20, implies spatial scale < 1 AU.
 - Can probe limits of jet formation, particle acceleration time scales!

28

Time [min] H. Sol et al., Active Galactic Nuclei under the scrutiny of CTA, Astropart. Phys. (2012), http://dx.doi.org/10.1016/ j.astropartphys.2012.12.005

Quick Hits: Resolving Extragalactic Structures

Fermi LAT >200 GeV background-subtracted counts map of Cen A Abdo et al. 2010, *Science* **328**, 725

Fermi LAT PSF at 10 GeV CTA PSF at 100 GeV (≥2 images) CTA PSF at 300 GeV (≥10 images) (68% containment)

are complementary

LAT 2-year result from Ackermann et al. 2011, *Phys. Rev. Lett.* **107**, 241302.

Complements IceCube searches in the neutrino channel

Status, Plans, & Schedule

Cherenkov Telescope Array: Global Timeline

"By signing this Declaration of Intent, the signatories – Ministries and Funding Agencies – wish to express their common interest in participating in the construction and operation of CTA."

Design Phase up to 2010 Preparatory / Pre-construction Phase 2011-2014

Construction Phase late 2014-2019 Operation Phase (up to 30 years) Early science starting 2016/17

So far signed by Argentina Austria Brazil France Germany Italy Japan Namibia Poland South Africa Spain Switzerland UK

Cherenkov Telescope Array: US Timeline

CTA as an Open Observatory

Currently Envisioned:

- Large Key Science Programs (surveys) use 1/3 to 1/2 of time.
- Bulk of time open for proposals from participating countries.
- Accessible for scientists worldwide.
- No access fees for individual proposals.
- All data available on the CTA Archive after a proprietary period.
- Fully open access for CTA Archive.
- Scientific community Data products Observer Virtual Observatory Proposal CTA observatory **Science Operation Science Data** Centre Centre Evaluation + selection, Data dissemination preparation and reduction Validation GÉANT egee Scheduling Execution Enabling Grids for E-sciencE **Array Operation Centre**

- Open formats and tools following astronomy standards (FITS) to represent and analyse data and instrument response functions (IRFs).
- ♦ User-oriented data center & Virtual Observatory interfaces.

VHE gamma astronomy is now well on-track...

... but needs CTA to continue.

Summary

- - A natural way to extend Fermi and VERITAS/H.E.S.S./ MAGIC science.
- Proven technology combined with judicious innovation.
- ♦ On track for construction starting in next couple years, early science beginning ~2016.
- ♦ Will serve a large and diverse community.
 - Broad multi-wavelength, multi-messenger impact complementing IceCube, HAWC, Fermi.
- US contribution: Novel telescope design will make a major impact in 0.1- 10 TeV range.

Backup Slides

LARGE 23 M TELESCOPE OPTIMIZED FOR THE RANGE BELOW 200 GEV

400 m² dish area 27.8 m focal length 1.5 m mirror facets

4.5 deg. field of view0.1 deg. pixelsCamera diameter over 2 m

Carbon-fibre structure

Active mirror control

4 LSTs on each site

MEDIUM-SIZED 12 M TELESCOPE

OPTIMIZED FOR THE 100 GEV TO ~10 TEV RANGE

100 m² dish area16 m focal length1.2 m mirror facets

7-8 deg. field of view ~2000 x 0.18 deg. pixels

25 MSTs on South site 15 MSTs on North site

MST PROTOTYPE IN BERLIN

PHOTOMULTIPLIER CAMERAS

Recording signal waveform for "interesting" (triggered) images

Options:

- Capacitor pipeline + analog trigger + (identical) "drawers"
 - NectarCam
 - DragonCam
- Flash-ADC + digital trigger + rack-based electronics
 - Flashcam

SMALL TELESCOPE

OPTIMIZED FOR THE RANGE ABOVE 10 TEV

ASTRI Design 4.3 m mirror 9.6 deg. foV 0.25 deg. pixels

Multiple options under study:

- Conventional single mirror, PMT camera
- Single mirror, silicon sensor camera
- Dual mirror optics, silicon & MAPMT camera

70 SSTs on Southern site

COMPACT SILICON CAMERAS

MEDIUM-SIZED DUAL MIRROR TEL.

EXTENDING THE MST ARRAY

9.7 m diameter
50 m² dish area
5.6 m focal length

8-9 deg. field of view 11000 x 0.07 deg. pixels

Extend South array by adding 36 SCTs contributed mostly by US

