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“Tension” in the field 

DAMA 8.9σ Modulation: 

Phase: 146 ± 7 days 

Period: 0.999 ± 0.002 yr 

Background: ~ 1 cpd/kg/keV 

Amplitude: 0.01 cpd/kg/keV CDMS II 
Silicon Analysis 
140 kg.days 
3 events 5-7σ 

arXiv: 1304.4279 

CoGeNT 
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Annual Modulation Dark Matter Searches 

with NaI Detectors 

Northern 
Hemisphere 

Gran Sasso 
DAMA/Libra 

250kg 
running 

Gran Sasso 
SABRE 

(Princeton) 
R&D 

Canfranc 
ANAIS 
~100kg 

starting in 2014? 

(Japan) 
PICO-LON 

 
(Korea) 
KIMS 

Southern 
Hemisphere 

South Pole 
DM-Ice 

17 kg running 
R&D for 250 kg 

ANDES Lab 
(proposed) expected 

start 2018 
ice rock 

Several groups conducting ultra-pure crystal R&D with several 
vendors to go to the full scale 

Only experiments in the Southern Hemisphere can 
definitively confirm DAMA. 
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DM-Ice (250 kg NaI) 

DM-Ice Sensitivity 
500 kg•yr NaI 

 (2 - 4 keV) with 1, 2, and 5 dru bkg  

Use NaI(Tl) 

• Eliminate uncertainties due to detector effects 
and dark matter models 

• Crystal Array for sophisticated event tagging 

 

Detection (5σ) or exclusion 

• 500 kg*yr NaI (same scale as DAMA) 

• Threshold < 2 keVee 

• Background < 5 cpd/kg/keV 

 

Go to the South Pole 

• Seasonal effects have opposite phase 

• 2200 mwe overburden 

• Ice < 1 ppt U/Th  (radon ~0) 

• Ice < 1 ppb K 

• Ice == great neutron moderator 

 

DM-Ice (250 kg) 

arXiv:1106.1156  
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• From simulation, internal backgrounds dominate, 
particularly 3 keV 40K 

• DAMA’s crystals (NIMA 592 (2008) 297– 315) : 

• 238U   : 1 - 10 ppt 

• 232Th  : 1 - 10 ppt 

•   natK    : < 20 ppb 

• NAIAD crystals : 5 - 10x DAMA bkg (PLB 616 (2005) 17–24) 

Global NaI Powder R&D 

Manufacturer Form Measurement 238U (ppt) 232Th (ppt) natK (ppb) 

Saint Gobain  Powder DAMA (HPGe) < 20 < 20 < 100 

Saint Gobain  Crystal DAMA/LIBRA 0.7 - 10 0.5 - 7.5 < 20 

Saint Gobain   Crystal ANAIS-0 6.1 3.2 410 

Saint Gobain Crystal DM-Ice (FNAL) 

Sigma-Aldrich  Powder (standard grade) DM-Ice (HPGe) 40 89 440 

Sigma-Aldrich  Powder (astro grade) DM-Ice  (HPGe) 63 < 95 < 126 

Sigma-Aldrich Powder (astro grade) A-S (ICPMS) - - ~ 4 

Alpha-Spectra Powder DM-Ice (HPGe) < 100 < 200 < 120 

Alpha-Spectra  Powder ANAIS-25 (HPGe) < 55 < 130 < 90 

32” diameter NaI Crystal 

Technical challenge == a method to measure K < 100 ppb level 
• ICPMS  is promising  < 10 ppb 
• Samples have been sent… 

• Also working with SICCAS (Shanghi) 

DM-Ice17 now has 
2 NAIAD crystals 



Co-Deployed with IceCube at the 
South Pole in December 2010 
• A 17 kg NaI detector  
• Operation since Jan. 2011 
• Data run from June 2011 

Goals… 
• determine the feasibility of deploying 
a remotely-operable detector in the 
Antarctic Ice 
• Assess the environmental stability 
• Establish the radiopurity of the 
Antarctic ice / drill ice 
• Explore the capability of IceCube to 
veto muons  
• Look for modulations 

DM-Ice17 Deployment 

•  2200 M.W.E. overburden 
•  ~85 muons/m^2/day 

50m 

1450m 

2450m 

2820m 

bedrock 

IceCube lab 

String 07 

String 79 
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Feb 2010 
• a great idea! 

Dec 2010 
• IceCube DAQ 
• NAIAD crystals 
• deployed at Pole 

10 months 



NAIAD NaI Crystal  
(Ø 5.5” x 6”, 8.5 kg) 

5 cm quartz lightguides 
(Suprasil B) 

2 IceCube mainboards 

Stainless Steel 
Pressure Vessel 

1.0 m 

36 cm (14”) 

PMTs:  
5” ETL 9390-UKB  

PTFE light reflectors 

IceCube 
DOM 59 

7 m 

DM-Ice 

IceCube 
DOM 60 

DM-Ice17 (prototypes) 

2 HV control boards 
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Prototype  x2 



• Remotely programmable sample rate, HV & 
threshold 

• Each PMT set to trigger  ~ 0.3 spe 

• Waveform recorded only when coincidence 
between both PMTs w/in 800 ns on a single 
crystal 

• Waveform from each PMT digitized separately 
in the ice by IceCube mainboards and sent to 
hub 

• Time stamp synchronized to IceCube GPS and 
calibrated for transit time 

• Data sent over satellite to Madison, WI 

Data Transfer 
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1. Temperature of the boards 

• ~10°C above surrounding ice 

• Fast (2-3 weeks) decrease during 
freeze-in 

• Slower decrease over a few months 
after freeze-in 

2. Pressure follows similar trend as 
temperature (ADC resolution limited) 

3. High Voltage on the PMTs 

Values recorded every 2 sec. before April 
2012. Every 60 sec. since April 2012. 

  Temp and pressure 
sensors mounted 
on the mainboards 
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data 

data 

data 

Detector Monitoring 



•   Single PMT trigger rates 

•   General decay over time 

•   Single trigger rate variation 
seems mostly in the noise 
(not observed in coincident 
data) 
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data 

data 

•  Data run since June 2011 

•  99.75% uptime  

•  well known down times (power cycling, 
pedestal and dark noise runs) 

PMT Trigger Rates 

DM-Ice17 Livetime 

Detector Monitoring 



Signal Channels 

x16   ATWD - 0 

x2   ATWD - 1 

x0.25   ATWD - 2 

FADC 

• 4-channel output 

– Record each event passing 
coincidence between PMTs 

– ATWD = 14bits dynamic range 

• Energy = sum over entire 
ATWD waveform 

– 5-6 photoelectrons/keV 

– Sum over 600 ns 

– FADC currently does not 
resolve as well  

• Stable data taking since June 
2011 

– 29.6 kg.yr of stable data to date  

– 99.75% livetime 
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Energy Spectrum: Gammas 

212Pb (Th-chain) + 214Pb (U-chain) 

214Pb (U-chain) 

214Pb (U-chain) 

208Tl (Th-chain) + 214Bi (U-chain) 

60Co 

40K 
213Bi (U-chain) 

214Bi (U-chain) 

208Tl (Th-chain) 

18 months of data from 
both PMTs on a single 
crystal 

cn
ts

/d
ay

/k
g

/k
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Main backgrounds: 

•  U-chain 

• Th-chain 

• 40K 

• 60Co 

Internal contamination 
lines used for 
calibration 

DM-Ice17 Prototype1 Spectrum 
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Cosmogenic 125I  (in the NaI crystal) 

Cosmogenic lines verify our energy 
calibration; this is particularly useful 
for the prototype since we do not 
have an in-ice source.  

210Pb (46.5 keV) 

125I (67.3 keV) 

125I X-rays 

July 2011 

April 2012 

keV 

Decay of 125I 
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surface X-rays 

July – April Residual 

Verified by 59 
day half-life 
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Resolution of DM-Ice17 

DM-Ice17:  1 month of data from both PMTs for each crystal. 

Small NaI: E. Sakai, IEEE Transactions on Nuclear Science NS-34 (1987) 418. 

NAIAD: The NAIAD experiment B. Ahmed et al, Astropart. Phys. 19 (2003) 691. 

DAMA: R. Bernabei et al., Nucl. Instrum. Methods A 592 (2008) 297. 

DM-Ice17 has resolution 
competitive with other NaI 
crystal experiments, 
studied down to 3 keV.  

DAMA switching readout channel 

DAMA 

NAIAD  

Small NaI Detector 

DM-Ice17 Prototype 2  

DM-Ice17 Prototype 1  

• DM-Ice17 uses NAIAD 
PMTs and crystals.    

σ
/E
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--- No Cut 

--- EMI & Thin 

--- Peak Finding 

--- Steppiness 

3 keV 40K Peak 

At 6 keV we see 7.2 ± 0.4 cpd/kg/keV.  
Simulations for the full scale DM-Ice 
give 1-2 cpd/kg/keV @ 5 keV (not 
including multi-crystal “hit” rejection) 

Below 4 keV, we are capable of 
revealing the 40K peak  despite 
the difficulties of single crystal 
analysis. 

We understand 
our spectrum well 
down to 4 keV. 
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Background Model 

Total Sim. 

Crystal 

Pressure Vessel Quartz 

PMTs 

Drill Ice 

Data 

All components 
measured/estimated 
and simulated 
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Region of Interest 
• Good agreement with 

simulation above 20 keV 
– Surface event simulation at 

12 keV in progress 

• We understand our 
detector to 4 keV 
– NAIAD published to 4 keV; 

we are pushing lower 

• We model our 3 keV peak 
to within a factor of 2 of 
simulation 
– Understanding efficiencies 

<3 keV in progress 

18 months of data from both PMTs on a single crystal 

cp
d

/k
g

/k
e

V
 

7.2 ± 0.4 cpd/kg/keV 

210Pb surface event; simulation in progress 

---- Simulation 

---- Data 

Energy (keV) 

125I cosmogenic 
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3 keV from 40K 

Looking ahead: 
• Backgrounds in ROI 5x higher than simulated for full scale DM-Ice 
• Multi-crystal veto will suppress 3 keV events 



Conclusions: 
•  successfully deployed two detectors 2450 meters in the ice 

•  incredibly stable environment 

•  calibration from internal/external backgrounds (no calib sources) 

•  Geant4 background model in agreement with data 

•  good understanding down to 4 keV ( ~ 7 cpd/kg/keV) 

•  pushing our energy threshold < 2 keV 

Matthew Kauer, UW Madison IPA 2013, Madison 18 

DM-Ice Sensitivity 
500 kg•yr NaI 

 (2 - 4 keV) with 1, 2, and 5 dru bkg  

DM-Ice (250 kg) 

arXiv:1106.1156  
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BACKUP  SLIDES 



 –-–- ATWD ch0 (x16) 
 ––-- ATWD ch1 (x2) 
 ––-- ATWD ch2 (x0.25) 
 ––-- FADC 

PMT thresholds ~ 0.3 PE 

Coincidence requirement < 800 ns 

FADC (@ 40 MHz) 255 bins = 6.375 us 

ATWD (@ 200 MHz) 128 bins = 600 ns 

PMT Trigger Rate 100-150 Hz 

Coincidence Trigger Rate ~ 4 Hz 
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Data Acquisition and Digitizing 

• IceCube mainboards 
• Thoroughly engineered and 

tested 
• Slightly modified for DM-Ice 



Scintillation Events 

• Signal comes from 
scintillation in the crystal. 

• Coincidence required 
between the two attached 
PMTs (800 ns). 

• At high energies, signal has 
the characteristic 
scintillation pulse shape. 

• At low energies, 
increasingly events are just 
a series of single photo-
electrons. 
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Energy Calibration 

High energy fit 
intercepts at -15 keV 

Separate fit for low 
energy < 100 keV 

• High energy fit ( > 100 keV) is linear 
• Low energy  fit ( < 100 keV) deviates from 

linearity 

As observed in other literature: 
• Rev.Sci.Inst. 27, 589 (1956) 
• Nuc.Inst.Meth. 15, 55-58 (1962) 
• J.Appl.Phys. 107, 113513 (2010) 
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pedestal 

1pe 

• Obtain 1pe-ped separation from 
dark noise runs (ie no coincidence 
requirement) 

• Normalize the energy to keV 
using the energy calibration 

 

xtal-1 = 6.1 +/- 0.07 pe/keV 
xtal-2 = 4.9 +/- 0.05 pe/keV 

NaI Light Yield 

Consistent with: 
• DAMA = 5.5 – 7.5 pe/keV 
• NaiAD = 5 – 8 pe/keV 
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Detector Stability 
 Detector calibration is stable to 1.3% over 18 months. 

 1.3% decrease over 18 months in light collection (peak position) observed at 600 
and 1460 keV 

 No observable change in calibration at 45 keV 

 We have not had to change our calibration with time  
 Any changes at higher energies are smaller than our resolution 

45 keV 

0.90 
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• gamma expected 
from 54Mn 

– Eγ = 835 keV 

– t1/2 = 312.03 days 

54Mn Peak Finding 
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Energy (keV) 

Cosmogenic 54Mn  (in the steel)  

Fit Expectation 

Energy (keV) 836.1 ± 3.0 834.8 

Sigma (keV) 36.9 ± 3.7 23.3 

Deploy Rate 
(decays/day) 

51,700 ± 6,500 135,800 
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EM Interference (EMI) Events 

• Electromagnetic interference 
caused by the hardware 
monitoring can trigger the 
detector. 

• Monitoring reduced from 
every ~2 seconds to every 
~60 seconds in March 2013 to 
reduce this event rate. 

• This change reduced EMI 
events from 21% of all events 
to 0.9% of all events in 
prototype 1. 

• Current cut variable relies on 
‘spikiness’ of waveform : 
– Sum(  ( (next – bin) – (bin – previous) ) ^2 ) 
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EMI 

EMI Cut Variable vs. Energy 
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“Thin Pulse” Events 

• Interactions within the 
light guides and/or PMTs 
can also trigger the 
detector. 

• These events are referred 
to as thin events due to 
their characteristic pulse 
shape. 

• Current cut variable : 
– Pulse Integral / Pulse Maximum 

• Current cut value chosen 
to preserve 75% of signal 
with a signal to noise ratio 
> 10  in cut region. 

• Current Energy Threshold 
:  4 keV 

Thin 

Scintillation 

Other noise 
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Thin Cut Variable vs. Energy 
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Peak Finding Cut  (Dm-Ice Madison) 

• “Peak Finding” in theory 
counts the number of 
photoelectrons in each 
PMT. 

• In practice, a simple 
peak finding algorithm 
is used to count local 
maxima above a 
threshold.  

• Cut Requirement : Each 
PMT sees >4 peaks 

Energy Spectrum after Peak Finding Cut 
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Steppiness Cut  (DM-Ice Sheffield, UK) 

• Steppiness in essence requires 
multiple SPEs to occur in quick 
succession in at least one PMT. 

• This is achieved by requiring a 
smoothed waveform to break 
a threshold. 

• Steppiness is not a good cut of 
thin pulses so a series of cuts 
is required to remove them. 
– Energy symmetry between 

the two PMTs 
– Mean time symmetry 

between the two PMTs 
– Mean time 
– Tail energy fraction 
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Smoothing 

Energy Spectrum after Sheffield Cuts 
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Internal Crystal Contamination 

• Internal 238U and 232Th 
contamination in our crystal is 
estimated by looking at the alpha 
region 

• Matching simulation to data          
yields this estimate 

• 238U chain is out of equilibrium 

• Alpha quenching is similar to           
that seen by DAMA 

232Th 

218Po 

210Po 

222Rn 
226Ra 

234U 230Th 238U 

Alpha Quenching 

DM-Ice17: α/γ = 0.50 + 0.0245 * Eα(MeV) 

DAMA:       α/γ = 0.47 + 0.0257 * Eα(MeV) 

DM-Ice17 
(uBq/kg) 

DAMA 
(uBq/kg) 

DM-Ice17 to  
DAMA ratio 

U238 No info 2 - 

U234 93 12 7.8 

Th230 93 12 7.8 

Ra226-Pb210 933 18 52 

Bi210-Pb206 1680 33 51 

Th232 214 6 36 
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40K in the Crystal 
• 40K in the crystal is estimated from the beta shoulder  

• Matching simulation to data yields about 650 ppb 40K 

---- Data 

---- Total Sim 

---- Crystal 

---- Quartz 

---- PMTs 

---- Pressure Vessel 


