
Observation of PeV Neutrinos in IceCube
Very high energy events in the 2010/2011 IceCube data
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Observing astrophysical neutrinos allows conclusions about the acceleration mechanism
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TeV Neutrinos

‣ Neutrinos from cosmic ray interactions in:
• Atmosphere
• Cosmic Microwave Background
• Gamma Ray Bursts (Acceleration Sites)
• Active Galactic Nuclei (Acceleration Sites)
• ?
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Neutrinos are ideal astrophysical messengers
Why Neutrinos?

‣ Travel in straight lines

‣ Very difficult to absorb in flight
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Neutrinos are detected by looking for Cherenkov radiation from secondary particles 
(muons, particle showers)

The IceCube Neutrino Observatory

‣ 5160 PMTs

‣ 1 km3 volume

‣ 86 strings

‣ 17 m PMT-PMT spacing 
per string

‣ 125 m string spacing

‣ Completed 2010
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Neutrinos are detected by looking for Cherenkov radiation from secondary particles 
(muons, particle showers)

The IceCube Neutrino Observatory
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Neutrinos are detected by looking for Cherenkov radiation from secondary particles 
(muons, particle showers)

The IceCube Neutrino Observatory
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Drill camp

South Pole station

Skiway

Counting house

IceCube’s footprint

7

The IceCube Neutrino Observatory
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Signatures of  signal events
Neutrino Event Signatures
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CC Muon Neutrino Neutral Current /Electron 
Neutrino CC Tau Neutrino

track (data)

factor of  ≈ 2 energy resolution
< 1° angular resolution

cascade (data)

≈ ±15% deposited energy resolution
≈ 10° angular resolution
(at energies ⪆ 100 TeV)

“double-bang” and other signatures 
(simulation)

(not observed yet)
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Backgrounds and Systematics

‣ Backgrounds:
• Cosmic Ray Muons

• Atmospheric Neutrinos

‣ Largest Uncertainties:
• Optical Properties of  Ice

• Energy Scale Calibration

• Neutral current / νe degeneracy
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A bundle of muons from a CR interaction in the 
atmosphere

(also observed in the “IceTop” surface array)
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Various calibration devices/methods to control detector systematics
Calibration

‣ LED flashers on each DOM

‣ In-ice calibration laser

‣ Cosmic ray energy spectrum

‣ Moon shadow

‣ Atmospheric Neutrino Energy Spectrum

‣ Minimum-ionizing muons
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Moon Shadow in Cosmic Rays
Muons in IceCube (59 strings)
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Simple search to look for extremely high energies (109 GeV) neutrinos from proton 
interactions on the CMB

GZK Neutrino Analysis

‣ Upgoing muons
• Always neutrinos

• Background: atm. neutrinos

• High threshold (1 PeV)

‣ Downgoing muons (VHE)
• CR muon background

• Very high threshold (100 PeV)
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Appearance of  ~1 PeV cascades as an at-threshold background
Results

‣ Two very interesting events in IceCube (between May 
2010 and May 2012)
• shown at Neutrino ’12

• 2.8σ excess over expected background in GZK analysis

• paper submitted and on arXiv (arXiv:1304.5356)

‣ There should be more
• GZK analysis is only sensitive to very specific event topologies 

at these energies
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“Ernie”~1.2PeV

“Bert”~1.1PeV
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What are they?
Studying individual events in IceCube
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What are they?
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Energy Reconstruction of EM showers
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Systematics in Energy Reconstruction

‣ Energy scale: better than ≈ 10%
• From minimum ionizing muons: ±5%

• Scales very well to higher energies over orders 
of  magnitude (measured with in-ice calibration 
laser)

‣ Modeling of photon transport in ice
• Measured with in-ice calibration LEDs and 

other devices (dust logger, ...)

‣ Statistical error at 1 PeV is negligibly small
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Shower directions reconstructed from timing profile
Directional Resolution for Showers
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Statistical uncertainties in angular reconstruction for showers is small.
Dominated by ice systematics!
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Directional Resolution for Showers

Angular Resolution

N. Whitehorn, UW Madison IPA 2013 - 34
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Directional Resolution for Showers
resolution for an individual exam

ple event from
 re-sim

ulation
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Zenith Resolution for Showers

Preliminary

resolution for an individual event from
 re-sim

ulation

‣ Angular error distributions 
on the order of 10°-15° 
depending on the ice model 
assumption
• two ice examples are shown

• aggregate resolution in black
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Things We Know

‣ At least two PeV neutrinos in a 2-year dataset

‣ Events are downgoing

‣ Seems not to be GZK (too low in energy)

‣ Higher than expected for atmospheric background

‣ Spectrum seems not to extend to much higher energies
• unbroken E-2 would have made 8-9 more above 1 PeV
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Things We Wanted to Learn

‣ Isolated events or tail of spectrum?

‣ Spectral slope/cutoff

‣ Flavor composition

‣ Where do they come from?

‣ Astrophysical or air shower physics (e.g. charm)?

‣ Need more statistics to answer all of these!
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High-Energy Contained Vertex Search
How we found more...
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Specifically designed to find these contained events
Analysis of  dataset taken from May 2010 to May 2012 (662 days of  livetime)

‣ Explicit contained search at high 
energies (cut: Qtot>6000)

‣ 400 Mton effective fiducial mass

‣ Use atmospheric muon veto

‣ Sensitive to all flavors in region 
above 60TeV

‣ Three times as sensitive at 1 PeV

‣ Estimate background from data
23

Follow-up Analysis

μ Veto

μ

νμ

✓
✘
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Mostly incoming atmospheric muons sneaking in through the main dust layer
Background 1 - Atmospheric Muons

‣ Reject incoming muons when “early charge” in veto region
‣ Control sample available: tag muons with part of the detector - known bkg.
‣ 6±3.4 muons per 2 years (662 days)
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What’s “early charge”?
Background 1 - Atmospheric Muons
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Use known background from atmospheric muons tagged in an outer layer to estimate 
the veto efficiency

Estimating Muon Background From Data
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‣ Add one layer of DOMs on the 
outside to tag known background 
events
• Then use these events to evaluate the 

veto efficiency

‣ Avoids systematics from  
simulation assumptions/models!

‣ Can be validated at charges below 
our cut (6000 p.e.) where 
background dominates

μ Veto Tagging Region
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Very low at PeV energies
Background 2 - Atmospheric Neutrinos
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‣ Typically separated by energy

‣ Very low at PeV energies (order of 0.1 events/year)

‣ Large uncertainties in spectrum at high energies

‣ 4.6+2.9-1.9 events in two years (662 days)

‣ Rate accounts for events vetoed by accompanying muon from the same air 
shower in the Southern Sky

‣ Baseline model: Enberg et al. (updated with cosmic-ray Knee model)
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Differences at low energies between the flavors due to leaving events at constant charge 
threshold

Effective Area

28
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Fully efficient above 100 TeV for CC electron neutrinos
About 400 Mton effective target mass

Effective Volume / Target Mass
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What Did We Find?
26 more events!

IceCube Preliminary



26 more events in the 2 years of  IceCube data (2010/2011 season: “IC79”&“IC86”)
What Did We Find?

‣ 28 events observed!
• 26 new events in addition to the two

1 PeV events!

‣ Track events (x) can have much 
higher neutrino energies than 
deposited energies
• also true on a smaller scale for shower 

events for all signatures except 
charged-current νe
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Some examples
What Did We Find?
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declination: -0.4°
deposited energy: 71TeV

declination: -13.2°
deposited energy: 82TeV

declination: 40.3°
deposited energy: 253TeV
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Generic full-sky likelihood scan for each event (works with shower and track signatures)
Event Reconstruction
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‣ Fits for deposited energy along a “track” in each skymap direction based on hit 
pattern using a detailed model of the glacial ice optical properties

‣ Result: direction with uncertainty and estimate for deposited energy
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Uniform in fiducial volume

34

Event Distribution in Detector
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Uniform in fiducial volume
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Event Distribution in Detector
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Uniform in fiducial volume
Event Distribution in Detector
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‣ Backgrounds from atm. 
muons would pile up  
preferentially at the 
detector boundary

‣ No such effect is observed! -400
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Systematic Studies and Cross-Checks

‣ Systematics were checked using an 
extensive per-event re-simulation
• varied the ice model and energy scale 

within uncertainties for each iteration 
and repeated analysis

‣ Different fit methods applied to the 
events show consistent results
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‣ Tracks:
• good angular resolution (<1deg)

• inherently worse resolution on energy 
due to leaving muon

‣ Showers:
• larger uncertainties on angle (about 

10°-15°)

• good resolution on deposited energy
(might not be total energy for NC and 
ντ)
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Cross-check with a fit method based on direct re-simulation of  events
Systematic Studies and Cross-Checks

‣ Second fit method based on continuous 
re-simulation of events
• Can include ice systematics like directional 

anisotropy in the scattering angle distribution 
and tilted dust layers directly in the fit!

• Very slow, works for shower-like events

‣ Shown: comparison with other method

‣ Within these known bounds: all results are 
compatible to within 10%
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Charge Distribution

‣ Fits well to tagged background 
estimate from atmospheric muon 
data (red) below charge threshold 
(Qtot>6000)

‣ Hatched region includes 
uncertainties from conventional and 
charm atmospheric neutrino flux 
(blue)
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muon bkg.
estimated
from data
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Stay tuned for tomorrow!
Conclusions

‣ 28 events with energies above ≈ 50 TeV found in two 
years of IceCube data (2010 & 2011)

‣ Stay tuned for more results and interpretation in the 
plenary talk by Nathan Whitehorn tomorrow!

‣ And now:
What about their directions? (Naoko Neilson)
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The IceCube Collaboration includes about 250 researchers  from 39 institutions around the world.  
Prof. Francis Halzen, University of Wisconsin – Madison is the principal investigator and 
Prof. Olga Botner from Uppsala University serves as the collaboration spokesperson.
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