Searching for Sterile Neutrinos and CP Violation: The IsoDAR and Daeδalus Experiments

1

Mike Shaevitz - Columbia University

ICECUBE PARTICLE ASTROPHYSICS SYMPOSIUM

IPA2013: MAY 13-15, MADISON, WI

Daedalus and IsoDAR Experiments

A two-phase physics program using cyclotron accelerators to make decayat-rest neutrino sources.

Phase 1: Very short baseline search for sterile neutrinos (IsoDAR)

- Use an isotope decay-at-rest neutrino source
- Search for \overline{v}_{e} disappearance as a function of energy and distance

A. Bungau et al., PRL 109, 141802 (2012)

Phase 2: A new way to search for CP violation in the v-sector (Dae δ alus)

- Traditional approach:
 - A single neutrino beam and multiple detectors at different baselines
 - Compare v_e to $\overline{v_e}$ appearance probability in far detector
- Dae∂dalus approach*:
 - A single large detector and multiple pion decay-at-rest neutrino sources
 - Compare \overline{v}_{e} appearance rate as function of energy and distance

* J.M Conrad and M. H. Shaevitz, PRL 104, 141802 (2010)

DAEδDALUS High Power (~1 MW) 800 MeV Cyclotron System ³ (Under Development with Lab and Industrial Partners)

Cyclotron Neutrino Sources

Isotope decay-at-rest

30

40

50

4

Daedalus Setup:

Current Accomplishments and Status

- · Ion source developed by collaborators at INFN Catania
 - Reached adequate intensities for the system

- Ion Source Beam currently being characterized at Best Cyclotrons, Inc, Vancouver (NSF funded)
 - Results to be available by Cyclotrons'13 Conference, Sept 2013, Vancouver
 "Cyclotron"

IsoDAR Experiment

Isotope Decay-at-Rest Neutrino Source ($\overline{v_e}$ Disappearance) to Search for Sterile Neutrinos

Where Are We With Sterile Neutrinos?

- Several hints of oscillations through sterile neutrino state with $\Delta m^2 \approx 1 \text{ eV}^2$
 - LSND / MiniBooNE v_e / \overline{v}_e appearance
 - Reactor $\overline{v_e}$ disappearance ("Reactor Anomaly")
 - Radioactive source v_e disappearance
 - But still no indication of ν_{μ} disappearance

Some difficulty for fits with one or two sterile neutrino models - App vs Disapp - $v vs \overline{v}$

- Establishing the existence of sterile neutrinos would be a major result for particle physics but
- Need definitive experiments
 - Significance at the > 5σ level
 - Observation of oscillatory behavior within detector
- Several directions for next generation experiments
 - Multi-detector accelerator neutrino beam experiments
 - Very short baseline (VSBL) experiments with compact neutrino sources

Has $\overline{v_e}$ Disappearance Been Observed? \Rightarrow Reactor Antineutrino Anomaly

and $sin^{2}(2\theta_{new})=0.12$, with $sin^{2}(2\theta_{13}) = 0.085$ arXiv: 1204.5379

Very-short Baseline Oscillation Experiments

v - Source

 $1/L^2$ flux rate modulated by $\text{Prob}_{osc} = \sin^2 2\theta \cdot \sin^2 \left(\Delta m^2 L / E \right)$

- Can observe oscillatory behavior within the detector if neutrino source has small extent .
 - Look for a change in event rate as a function of position and energy within the detector
 - Bin observed events in L/E (corrected for the 1/L²) to search for oscillations
- Backgrounds produce fake events that do not show the oscillation L/E behavior and can be separated from signal

Possible Sources for VSBL Experiments

Need experiments with L/E ~ 1 m/MeV

- Reactor sources
 - $E_v \sim 3 \text{ MeV} \Rightarrow \text{optimum distance around 3 to 20 m}$
 - Reactor core size can also be an issue
- Radioactive sources
 - $E_v \sim \text{few MeV} \Rightarrow \text{see oscillations with wavelengths} \sim 1 \text{m}$
 - Compact source can be placed directly into detector or just outside
- Isotope neutrino source
 - $E_v \sim 8 \text{ MeV}$ (typical of short lived isotopes, i.e. ⁸Li)
 - Compact source that can be set up near an existing large detector
 - Beam can be turned off periodically to measure background
 - Higher energy neutrinos with less background

Overview IsoDAR \bar{v}_e **Disappearance Exp**

- High intensity \overline{v}_e source using β -decay at rest of ⁸Li isotope \Rightarrow IsoDAR
- ⁸Li produced by high intensity (10ma) proton beam from 60 MeV cyclotron \Rightarrow being developed as prototype injector for DAE δ ALUS cyclotron system
- Put a cyclotron-isotope source near one of the large (kton size) liquid scintillator/water detectors such as KAMLAND, SNO+, Borexino, Super-K....

- Physics measurements:
 - \overline{v}_{e} disappearance measurement in the region of the LSND and reactorneutrino anomalies.
 - Measure oscillatory behavior within the detector as a function of L and E.

Phys Rev Lett 109 141802 (2012) arXiv:1205.4419

IsoDAR Neutrino Source and Events

- $p (60 \text{ MeV}) + {}^{9}\text{Be} \rightarrow {}^{8}\text{Li} + 2p$
 - plus many neutrons since low binding energy
- n + ⁷Li (shielding) \rightarrow ⁸Li
- ${}^{8}\text{Li} \rightarrow {}^{8}\text{Be} + e^{-} + \bar{v}_{e}$
 - Mean \overline{v}_e energy = 6.5 MeV - 2.6×10²² \overline{v}_e / yr
 - $-2.0 \times 10^{-2} v_{e} / y_{I}$
- Example detector: Kamland (900 t)
 - Use IBD $\overline{\nu}_e$ + p \rightarrow e⁺ + n process
 - Detector center 16m from source
 - ~160,000 IBD events / yr
 - 60 MeV protons @ 10ma rate
 - Observe changes in the IBD rate as a function of L/E

IsoDAR at Kamland

on the details of siting and installation of the cyclotron, beamline, and neutrino source.

IsoDAR \overline{v}_{e} **Disappearance Oscillation Sensitivity (3+1)**

IsoDAR Measurement Sensitivity

Oscillation L/E Waves in IsoDAR

Observed/Predicted event ratio vs L/E including energy and position smearing

IsoDAR's high statistics and good L/E resolution has potential to distinguish (3+1) and (3+2) oscillation models

Beyond Oscillations:

IsoDAR $sin^2\theta_w$ Measurement

$\overline{v}_{e}e$ Elastic Scattering \Rightarrow Measure sin² θ_{W}

- NuTeV weak mixing angle measurement using neutrino neutral current scattering differs from expectation by 3σ
 - Is there something special with neutrinos or difficulty in NuTeV analysis?
 - ⇒ Use IsoDAR/Kamland to measure $\sin^2\theta_W$ with pure lepton process antineutrino-electron elastic scattering: $\overline{v_e}$ + e → $\overline{v_e}$ + e

IsoDAR sin²θ_w Measurement Sensivity

5yr data (7200 evts with E_{vis}>3MeV)

⇒ IsoDAR/Kamland: $\delta sin^2 \theta_w = 0.0075$ (~3%)

– Would be the best $\overline{\nu}_e e$ (or $\nu_e e$) elastic scattering measurement (See 3% band below)

DAEDALUS Experiment

Search for CP Violation using \overline{v}_e Appearance with a Pion Decay-at-Rest Neutrino Beam

Use L/E Dependence of $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ to Measure δ_{CP}

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = (\sin^{2} \theta_{23} \sin^{2} 2\theta_{13}) (\sin^{2} \Delta_{31})$$

$$\mp \underline{\sin \delta} (\sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12}) (\sin^{2} \Delta_{31} \sin \Delta_{21})$$

$$+ \underline{\cos \delta} (\sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12}) (\sin \Delta_{31} \cos \Delta_{31} \sin \Delta_{21})$$

$$+ (\cos^{2} \theta_{23} \sin^{2} 2\theta_{12}) (\sin^{2} \Delta_{21}).$$
We want to see if δ is nonzero terms depending on mixing angles terms depending on mass splittings

if

 $\Delta_{ij} = \Delta m_{ij}^2 L / 4E_{\nu}$

Use Multiple Neutrino Sources at Different Distances to Map Out $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ Appearance Rate

Where can DAEδALUS run?

Hyper-K (or initially, Super-K)

LENA - Scintillator Dectector

Cavern height: 115 m. diameter: 50 m shielding from cosmic rays: ~4,000 m.w.e. Muon Veto plastic scintillator panels (on top) Water Cherenkov Detector 3,000 phototubes 100 kt of water reduction of fast neutron background **Steel Cylinder** height: 100 m, diameter: 30 m 70 kt of organic liquid 30,000 - 50,000 phototubes Buffer thickness: 2 m non-scintillating organic liquid shielding from external radioactivity Nylon Vessel separating buffer liquid and liquid scintillator Target Volume height: 100 m, diameter: 26 m 50 kt of liquid scintillator

CP Violation Sensitivity

• Dae δ alus has good CP sensitivity as a stand-alone experiment.

Coverage of CP violation parameter at LENA, 10 years

- Dae
 Dae
 alus can also be combined with long baseline data to give enhanced sensitivity
 - Long baseline experiments have difficulty obtaining good statistics for $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ which Dae δ alus can provide
 - Dae δ alus has no matter effects and can help remove ambiguities.

Final Comments

- High-power (~1MW) class cyclotrons are becoming a reality
 - For physics, they can provide high intensity neutrino and radioactive-isotope beams
 - High industrial interest for medical isotope production
 - Other interest in connection with accelerator driven reactors (ADS)
- Establishing the existence of sterile neutrinos would be a major result for particle physics
 - Several hints in the $\Delta m^2 \sim 1 \text{ eV}^2$ region
 - Some tension with lack of ν_{μ} disappearance signals
 - Many proposals and ideas for sterile neutrino searches
 - New experiments to have better sensitivity (~5 σ level) with capabilities to see oscillatory behavior.
- IsoDAR can make a definitive search for sterile neutrinos
 - Combined L and E analysis with good resolutions can isolate the oscillatory behavior and reduce backgrounds
- Dae δ alus is another method to be used to probe for CP violation in the v-sector
 - Can provide high statistics \overline{v}_{e} data with no matter effects
 - Can give enhanced sensitivity when combined with long baseline ν_e appearance data