Results from the T2K long baseline neutrino oscillation experiment IceCube Particle Astrophysics Symposium Casey Bojechko for the T2K collaboration University of Victoria May 14th 2013

University of Victoria

Outline

- T2K Experiment: Elements and physics goals.
- Oscillation Analyses
 - v_e appearance
 - ν_µ disappearance
- Future prospects

T2K(Tokai to Kamioka)

- Long baseline neutrino oscillation experiment
 - Measurement of neutrino oscillation between near detector (J-PARC) and Super-Kamiokande.
- Main Physics Goals
 - Search for $v_e appearance v_\mu \rightarrow v_e$
 - Precise measurement of Δm^2_{32} , θ_{23} . v_{μ} disappearance $v_{\mu} \rightarrow v_{x}$

Neutrino Beam

- 30 GeV protons hit graphite target
- Pions produced in proton interactions on a target focused by 3 magnetic horns
 - focus π⁺, defocus π⁻

$$\pi^+ \to \mu^+ + \nu_\mu$$

- μ monitor at far end of beam dump
- Creates v_{μ} pure beam
 - $\overline{\nu}_{\mu}$ and ν_{e} are ~ few percent

Off-Axis Beam

 At small angles to the beam axis, neutrino energy is insensitive to parent pion energy

Off-Axis Beam

- Peak E_v tuned for oscillation maximum.
- 2.5^o off axis. Low energy narrow band beam.
- Reduce background from higher energy neutrinos

On axis INGRID

- 14 modules consisting of iron and scintillator arranged in a cross pattern
- Measures profile, direction and intensity of neutrino beam.
- Rate and beam direction stable over running period.

1mrad \rightarrow 2% shift in E

Day (with Physics Data)

Off Axis Near Detector

- ND280 (ND=near detector) is located 280 m from production target.
- Multi-Detector complex installed within UA1 magnet.
- Current analyses uses tracker, neutrino interactions in Fine Grained Detectors that are measured by Time Projection Chambers.
- FGDs provide fiducial mass, particle tracking.
- TPCs measure momenta, particle type.
- Makes measurement of unoscillated beam. ν_μ charged current interactions.
- Crucial in reducing systematic errors for precision oscillation measurements.

Quasi Elastic candidate

single pion candidate

DIS candidate DIS = deep

Super-Kamiokande

- 50 kton water Cherenkov detector. 22.5 kTon fiducial volume.
- PMTs line the inner and outer volumes of detector.
- Charged particles from neutrino interactions produce Cherenkov light. Ring recorded by PMTs.
- Detector measures direction of recoil particle, momenta, particle type.

Super-Kamiokande Event Displays

Sharp µ Cherenkov ring Fuzzy e Cherenkov ring NC π⁰ event: can mimic e if one ring is missed.

*events displays generated with MC

Analyzed Data

- Data set runs up to 2012/06/09 (End of Run 3)
- POT used in this analysis: 3.01 x 10²⁰

Oscillation Analyses

Neutrino flux prediction w/CERN NA61 result

SK Detector/Selection Uncertainties ND280 ν_{μ} measurements in CCQE and CCnonQE samples

Flux + Cross Section Fit

Neutrino Cross Section Uncertainties

 $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation Fit sin²2 θ_{13}

 $v_{\mu} \rightarrow v_x$ Oscillation Fit sin²2 $\theta_{23} \Delta m_{32}^2$

v Interactions

 CC (Charged-Current) quasi elastic (CCQE).

• $v + n \rightarrow \mu^{-} + p$ (n in ¹²C or ¹⁶O)

CC (resonance) single π(CC-1π)
ν + n(p) → μ⁻ + π⁺ + n(p)
DIS (Deep Inelastic Scattering)
ν + q → μ⁻ + mπ^{+/-/0} + X
CC coherent π (ν + A → μ⁻ + π⁺ + A)

NC (Neutral-Current) NC-1π⁰, etc...

• CCQE Signal Interactions. Initial neutrino can be reconstructed from the energy and direction of final lepton

 $E_{\nu}^{QE} = \frac{m_p^2 - (m_n - E_b)^2 - m_l^2 + 2(m_n - E_b)E_l}{2(m_n - E_b - E_l + p_l\cos(\theta_l))}$

ND280 Measurement

- Select CC events.
 - Lepton originating in FGD.
 - Muon-like dE/dx, negative curvature in TPC.
- Divide into QE-like, non-QE-like based on number of tracks.
- Likelihood fit to CCQE, CCnonQE
 p-θ distributions.
- Reduce flux and cross section uncertainties

Flux Constraints

- Common systematic parameters for ND280 and SK. ND280 used to tune flux and constrain error at SK
- Fits done with 2 different flux parameterizations.
 - v_e • v_μ and \overline{v}_μ

Cross Section Constraints

- Parameters with prior uncertainties from Mini-BooNE and other experiments are further constrained at ND280.
- Parameters that do not depend on nuclear target
 - Axial mass for CCQE, CC1π
 - Normalization parameters.

v_e appearance

Expected number of v_e Events

	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
total	3.3	11.2
$\overline{\mathrm{CC} \ \nu_{\mu} \rightarrow \nu_{e}}$	0.2	8.2
$CC \nu_{\mu}$	0.06	0.06
$\operatorname{CC} \nu_e$	1.8	1.7
NC	1.2	1.2

*varying systematics

v_e candidates

- 11 candidate events observed.
- Probability to observe 11 or more events based on the predicted background of 3.3 +/- 0.4 (syst.) events is 9 x10⁻⁴, (3.1 σ)
- Perform analysis using (p,θ) spectrum.

ve appearance oscillation fit

 $\delta_{CP} = 0 \qquad \sin^2 2\theta_{23} = 1.0 \qquad \Delta m_{32}^2 = 2.4 \times 10^{-3} eV^2$ $\sin^2 2\theta_{13} = 0.088^{+0.049}_{-0.039} \text{(normal hierarchy)}$ $\sin^2 2\theta_{13} = 0.108^{+0.059}_{-0.046} \text{(inverted hierarchy)}$

40

20

of events

p-value off 1x 10^{-3} $\theta_{13} = 0$ hypothesis

Oscillation parameter limits

- 68% and 90% confidence intervals scanning over δ
 - Top: Normal hierarchy
 - Bottom: Inverted hierarchy
- Analysis done with 2 other methods
 - Rate + Reconstructed Ev
 - Rate only.
- All 3 methods give consistent results.

Oscillation parameter limits

- Reactor experimental results (Daya Bay,RENO) consistent with T2K.
- Reactor experiments non sensitive to δ complementary to accelerator experiments.

v_µ disappearance

Expected number of v_{μ} Events.

# of pre-calculated events		
Event category	without oscillation	with oscillation
Total	210.46	59.39
CC ν_{μ} signal	200.55	52.17
CC $\bar{\nu_{\mu}}$ background	6.37	3.56
CC ν_e background	0.03	0.03
CC $\bar{\nu_e}$ background	0.00	0.00
Appearance ν_e background	0.00	0.12
NC background	3.51	3.51

ν_{μ} candidates

58 candidate events observed

 Likelihood ratio fit binned in reconstructed energy.
 Compare the observed to expected in 73 variable width bins, concentrated in oscillation region.

 Oscillation probability calculated using 3 neutrino flavours, θ₁₃ using average of reactor experiments

• Using normal hierarchy, earth density 2.6 g/cm³, $\delta = 0$

 $\begin{array}{rl} \sin^2 2\theta_{13} & 0.098\\ \sin^2 2\theta_{12} & 0.857\\ \Delta m_{21}^2 (eV^2) & 7.5 \times 10^{-5} \end{array}$

ν_{μ} disappearance oscillation fit

- Deficit at survival probability minimum.
- Analysis done with likelihood ratio fit and Alternative method using unbinned maximum likelihood consistent

Oscillation parameter limits 90% CL $2.14 \times 10^{-3} eV^2 < |\Delta m_{32}^2| < 2.76 \times 10^{-3} eV^2$ $\sin^2 2\theta_{23} > 0.957$

- Measures maximal mixing.
- Statistical error dominant

Simultaneous Fit

- Complementary study was done doing a simultaneous fit of ND280 and SK.
- Monte Carlo Markov Chain (MCMC) to find posterior distribution
- MCMC analysis produced Bayesian credible intervals.
- Credible/confidence intervals similar shape and size.

Future Prospects

- 3.01 x 10²⁰ POT is 4% of T2K goal, measurements are still statistics limited.
- Data collection ongoing 6.39 x 10²⁰ POT as of April 12th

Future Prospects

- Analysis upgrades
 - Upgraded SK fitting algorithm. Upgraded SK cuts, error evaluation. New samples used at ND280.
- Move to simultaneous fitting of $v_e \& v_\mu$ samples
- Task force formed to study future sensitivity of T2K, best combination of $v \overline{v}$ running. Combining T2K with other experiments to search for the θ_{23} octant, mass hierarchy and CP violation.

<u>T2K Collaboration</u> ~500 collaborators from 56 institutions, 11 nations

Back up

v Oscillations

The flavour state of the neutrino, v_α can be expressed as a superposition of mass states v_i.

$$|\nu_{\alpha}\rangle = \sum U_{\alpha i} |\nu_i\rangle$$

 Three neutrino flavours, neutrino mixings are described by the 3x3 PMNS matrix.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

v Oscillations

PMNS matrix often parameterized as

 $U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij}$

- Measured with atmospheric and long baseline v. $\theta_{23} \approx \pi/4$
- = Measured with solar, reactor v. $\theta_{12} \approx \pi/6$
- Measured with reactor, long baseline v. $\theta_{13} \approx \pi/20$
- Very different than the CKM matrix!
- CP violating phase δ has not yet been measured.

CP Violation in Lepton Sector

- CPV in quarks (CKM matrix) does not explain the matter antimatter asymmetry in the Universe.
- What about the leptons?
- CPV in neutrinos could give hints towards matter antimatter asymmetry.
- The CP asymmetry of neutrinos in terms of ve appearance.

 $\frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu_{\mu}} \to \bar{\nu_{e}})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu_{\mu}} \to \bar{\nu_{e}})} \simeq \frac{\Delta m_{21}^{2} \sin 2\theta_{12}}{4E_{\nu} \sin \theta_{13}} \sin \delta.$

• Measurements of θ_{13} made in the past few years.
θ_{13} at T2K

- T2K measures θ_{13} via v_e appearing in a v_{μ} beam.
- Appearance dependent θ_{13} as well as CPV term, mass hierarchy, θ_{23} octant.

 $P(\nu_{\mu} \to \nu_{e}) \sim \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) +$

(CPV term) + (matter term)

• Up to eight-fold ambiguity in determining θ_{13} and δ from $P(v_{\mu} \rightarrow v_{e})$

Unknowns

Mass hierarchy still unknown.
 Δm₃₂² = 2.4 x 10⁻³ eV²
 Δm₂₁² = 7.6 x 10⁻⁵ eV²

- θ_{23} is still consistent will maximal mixing $\pi/4$
- Deviation of θ₂₃ from maximal mixing? Lower or higher octant?

The past few years.

- June 2011: T2K. Electron neutrino <u>appearance</u>
- $\sin^2 2\theta_{13} = 0.11 + 0.044 (2.5 \sigma) (at \delta_{cp} = 0, NH).$
 - PRL 107, 041801
- March 2012: Daya Bay. Electron neutrino <u>disappearance</u>
 - $\sin^2 2\theta_{13} = 0.092 + 0.016(\text{stat}) + 0.005(\text{sys})$ (5.2 σ)
 - PRL 108, 171803
- April 2012: RENO. Electron neutrino disappearance
 - $\sin^2 2\theta_{13} = 0.113 + -0.013(\text{stat}) + -0.019(\text{sys})$ (4.9 σ)
 - arXiv:1204.0626

Daya Bay reactor neutrino disappearance

Neutrino flux prediction w/CERN NA61 result

- Uncertainty in flux found from proton beam profile, hadron production uncertainties.
- Kaon, pion production measured from NA61 experiment with same target material, beam energy as T2K.
- Tuned FLUKA + GEANT3 simulation used to estimate fluxes at ND280 and SK
- Beam flux uncertainty at Super Kamiokande ~15% before ND280 constraint.

 $[\]nu_{\mu}$ flux broken down by parent that produces ν

Neutrino Cross Section Uncertainties

- Cross section uncertainties set by external data at ~1 GeV from Mini-BooNE, other experiments.
- T2K primary neutrino interaction model is NEUT, with GENIE used as a cross-check.

Signal

- CCQE interactions use the model of Llewellyn Smith with nuclear effects described by relativistic Fermi gas model.
- Differences between NEUT and Mini-BooNE best fit used as prior uncertainty. ND280 further constrains models.

Neutrino Cross Section Uncertainties

- Backgrounds
 - Single Pion Production CC1π main background for v_µ disappearance: MisID'd as CCQE if pion is not identified
 - Pion production via hadronic resonances using Rein and Seghal Model
 - NC π^0 backgrounds main background to v_e appearance, flux dependant and can mimic a CC v_e interaction
 - Results from Mini-BooNE NCπ⁰ fit compared with K2K data (same target material as SK)

$\begin{array}{l} ND280 \ \nu_{\mu} \ measurements \\ \mbox{in CCQE and CCnonQE samples} \\ Systematics \\ \end{array}$

- Statistics limited analysis
- Major Systematics
 - Magnetic field distortions in TPCs
 - background from interaction outside the FGD
 - Secondary pion interactions
- Uncertainty given in terms of p-θ bins 40x40 covariance for each systematic

SK Detector/Selection Uncertainties

- SK DAQ timing cuts.
- Event is fully contained in inner detector Reconstructed vertex is within fiducial volume
- Only one reconstructed ring.
 - $v_{\rm e}$ Selection
- Ring is electron like
- Visible energy is greater than 100 MeV
- No Michel electron
- Invariant mass is not consistent with π⁰ mass
- Reconstructed energy is less than 1250 MeV

v_{μ} Selection

- Ring is muon like
- Reconstructed muon momentum is greater than 200 MeV.
- 1 or less Michel electron

$\nu_{\rm e}$ Selection

- Ring is electron like
- Visible energy is greater than 100 MeV
- No Michel electron
- Invariant mass is not consistent with π⁰ mass
- Reconstructed energy is less than 1250 MeV

ν_{μ} Selection

- Ring is muon like
- Reconstructed muon momentum is greater than 200 MeV.
- 1 or less Michel electron

ve appearance oscillation fit

 $\mathcal{L}(N_{obs}, x; o, f) = \mathcal{L}_{norm}(N_{obs}; o, f) \times \mathcal{L}_{shape}(x; o, f) \times \mathcal{L}_{sys}(f)$

- Extended likelihood fit of the reconstructed electron momentum and angle spectrum
 - **•** x: measurements in (p_e, θ_e)
 - o: oscillation parameters
 - f: systematic parameters
- Fit templates of v_e signal and background.
 - Backgrounds have a wider range in kinematic space.

SK Flux

SK Flux Uncertainties.

Beam Uncertainties

 $\frac{\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2}{\sin^2(2\theta_{23}) = 1.0}$

	% Errors on Sample Predictions				
	N _{ND}	Ν _{sκ}	N _{sk} /N _{nd}		
Pion Production	3.41	4.97	1.88		
Kaon Production	3.48	1.17	2.99		
Secondary Nucleon Production	5.46	6.61	1.34		
Hadronic Interaction Length	5.78	6.56	1.90		
Proton Beam, Alignment & Off-axis Angle	3.45	2.08	1.75		
Horn Current and Magnetic Field	1.40	1.16	1.39		
Total	10.04	10.94	4.78		

CCQE backgrounds

- Joint Fit is done on Mini-BooNE CC1π+ CC1π0 and NC1π0 data.
- CC1π Single Pion Production CC1π
- Main Background for vµ disappearance: Same as CCQE if pion is not identified
- Pion production via hadronic resonances using Rein and Seghal Model. Uses axial mass MARES and several normalization parameters.
- Parameters MARES, CC1π and NC1π0 are propagated to ND280.

- ve appearance: NC backgrounds are flux dependant and can mimic a CC ve interaction
- Results from Mini-BooNE NC fit compared with K2K data.
- K2K same nuclear target as SK.

	$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13} = 0.1$	
Error source	w/o ND280 fit	w/ ND280 fit	w/o ND280 fit	w/ ND280 fit
Beam only	10.8	7.9	11.8	8.5
M_A^{QE}	10.6	4.5	18.7	7.9
M_A^{RES}	4.7	4.3	2.3	2.0
CCQE norm. $(E_{\nu} < 1.5 \text{ GeV})$	4.6	3.7	7.8	6.2
$CC1\pi$ norm. ($E_{\nu} < 2.5 \text{ GeV}$)	5.3	3.7	5.5	3.9
$NC1\pi^0$ norm.	8.1	7.7	2.4	2.3
CC other shape	0.2	0.2	0.1	0.1
Spectral Function	3.1	3.1	5.4	5.4
p_F	0.3	0.3	0.1	0.1
CC coh. norm.	0.2	0.2	0.2	0.2
NC coh. norm.	2.1	2.1	0.6	0.6
NC other norm.	2.6	2.6	0.8	0.8
$\sigma_{ u_e}/\sigma_{ u_\mu}$	1.8	1.8	2.6	2.6
W shape	2.0	2.0	0.9	0.9
pion-less Δ decay	0.5	0.5	3.5	3.5
$CC1\pi$, $NC1\pi^0$ energy shape	2.5	2.5	2.2	2.2
SK detector eff.	7.1	7.1	3.1	3.1
FSI	3.1	3.1	2.4	2.4
SK momentum scale	0.0	0.0	0.0	0.0
Total	21.5	13.4	25.9	10.3

53

Systematic error contribution to the predicted number of events in oscillation analysis (%)

Road near 3 GeV RCS

- T2K/J-PARC has recovered from the "Great East Japan Earthquake" March 2011.
- Dec 9th LINAC operation restarted.
- Dec 24th. Neutrino events observed in T2K-ND80.

Road near 3 GeV RCS

Markov Chain Monte Carlo

- Sample from a multidimensional probability distribution is a with a directed random walk.
 - Randomly move from one point to another in your multidimensional space.
 - If the probability density is higher the second point, step to that point, if it is lower accept with a probablitly P = P(current)/P(proposed)

MINOS

- Latest results measure non maximal θ_{23}
- arXiv:1304.6335

$\begin{array}{l} \mbox{Measurements} \\ \mbox{90\% CL} \\ 2.14 \times 10^{-3} {\rm eV}^2 < |\Delta m^2_{32}| < 2.76 \times 10^{-3} {\rm eV}^2 \\ \sin^2 2\theta_{23} > 0.957 \end{array}$

