

Beyond CeCube

Design study for a multi-km³ Cherenkov detector at the South Pole

David Altmann

MANTS - Sep. 25, 2011

Bundesministerium für Bildung und Forschung

David Altmann

Beyond IceCube

Agenda

Current and future ν -telecopes

DecaCube

Conclusion & Outlook

Beyond IceCube 2/21

Astrophysical- ν observatories today

IceCube about 1 cubic kilometer

ANTARES about 0.01 cubic kilometer

Current limits

Best limits for diffuse ν -flux are measured with IceCube in the 40-string configuration

- So far only upper limit
- If full IceCube (86 strings) does see signal, statistic might not be large
- \rightarrow How can we measure astrophysical ν after IceCube?

Beyond IceCube 4/21

Future ν -telescopes

- IceCube extensions
 - Beyond DeepCore (low energy)
- Radio-Askaryan-telescopes
 - → ARA
- KM3Net (2-6 km³)

Possible KM3Net layout Volume: 2.75 km³ String spacing: 180 m

Why optical Cherenkov in deep ice?

- How can we improve ν measurement in the TeV & PeV realm?
 - → Stick with IceCube technology but increase the detector volume!
- The used technology is well understood
 - → Experience in building IceCube DOMs
 - → Experience in deploying IceCube DOMs
 - → Experience in using IceCube DOMs

David Altmann

Beyond IceCube 6/21

DecaCube: What do we need to build it?

- An extension to IceCube should increase the volume substantially
 - \rightarrow ~ 100 additional strings
 - Increased distance between the strings
 - → Same 60 DOMs per string design like IceCube
- 20 strings / year = 5 years deployment
- costs: roughly 80M€ (investment)

David Altmann

Beyond IceCube 7/21

DecaCube: How does it look like?

Design respects structures at the South Pole!

2000	'
1500	
Detector Total volume	
IceCube 1 km ³	
spacing 120 m $= 2.3 \text{ km}^3$	-
spacing 240 m 5,3 km ³ ₋₅₀₀	
	ube 86
-1500 - • • • • • space	ing 120 m
-2000	zing 360 m

 ν -simulation with standard IceCube software \rightarrow Results are preliminary!

3 PeV-event in IceCube spacing extension

- \rightarrow Looks like IceCube, only tracklength is longer
- $\rightarrow \text{More information than necessary!}$

Beyond IceCube 9/2

10 PeV-event in double spacing extension

ightarrow Maximal length in detector, more then one string row with hits

Beyond IceCube 10/21

4 PeV-event in triple spacing extension

 \rightarrow Long track, only one row of strings with hits.

Beyond IceCube 11/21

80 TeV-event in triple spacing extension

ightarrow In the new detector volume, not many hits – but reconstructable!

Effective area

$$R(E_{\nu}) = A_{eff}(E_{\nu}) \cdot \Phi(E_{\nu})$$

■ Which trigger condition?

soft trigger

- → 12 local coincidence hits
- robust vs noise but very

Beyond IceCube 13/21

Effective area ratio

- Ratio does not scale with volume!
- Scales linear with spacing
- Threshold for double spacing at \sim 10 TeV!
- Threshold for triple spacing at \sim 50 TeV!

Beyond IceCube 14/21

Effective area: Angular dependency

- up-going: $cos(\theta) < -0.33$
- horizontal-going: $-0.33 < \cos(\theta) < 0.33$
- down-going: $cos(\theta) > 0.33$

Earth becomes opaque!

David Altmann

Beyond IceCube 15/21

Effective area: Angular ratio down-going

Down-going ratio a bit better than horizontal ratio \rightarrow preliminary simulation!

Beyond IceCube 16/21

Effective area: Angular ratio up-going

- \rightarrow Low statistics make comparison at high energies difficult!
- ightarrow At lower energies similiar to down-going ightarrow expected!

Reconstruction with large spacing

Events (same trigger condition) with successful reconstruction (SPE): Weighted with E_{ν}^{-2} and normalized

 \rightarrow Even though DOM density is much lower, resolution remains at a good level. Horizontal events can benefit from tracks in the detector volume with length of several km \rightarrow Good Resolution!

Conclusion & Outlook

- \blacksquare An extension could improve $A_{\it eff}$, and resolution at least remains at a good level
- IceCube Software seems capable to simulate enlarged detector,
- but is not optimized for increased volume
 - → Results are preliminary!
- \blacksquare Only ν_{μ} investigated (ν_{τ} and ν_{e} have to be investigated)
- Atmospheric background has to be simulated (first promising technical tests with CORSIKA)
- Investigation of sophisticated trigger and reconstruction algorithms seems necessary

David Altmann

Beyond IceCube 19/21

Last slide!

Thank you for your attention!

Questions?

David Altmann

Beyond IceCube 20/21

How **good** do we simulate ν ?

- Increasing the simulated volume has impact on angular distribution!
- down-going events are overrated in the simulation!
 - All results are preliminary!
 - Weighting has to be fixed!

David Altmann