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Muon Energy Loss
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Photon Model

Model light from point sources or from finite extended sources
(possibly stacking to an infinite muon), taking into account ice
layering, etc.
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Track Description

Muon loses energy by continuous ionization processes (steady
Cerenkov emission) and by stochastic processes (bremsstrahlung,
photonuclear processes etc. — pointlike emission)
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Photorec

“Lightsaber” model: constant energy loss muon overlaid with
cascades every meter. Calculate (dE/dx) by scaling up table to
maximum likelihood fit to data

— constant energy loss and cascades scale with muons.
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Most other IceCube energy reconstructions (e.g. MuE) work the
same way, but with different ice parameterizations




Track segmentation
Losses from each cascade are stochastic, so they should scale
independently. Muon-like losses are also not constant. So we break
the track up into segments — every few meters place a cascade and
muon segment.

Solving for all of these independently gets us:
» Starting/stopping/contained tracks

Hybrid reconstruction

Taus

High-energy stochastics

Better energy measurement

Better particle ID

Reconstruction quality cut

Cascade detection

Bundle multiplicities

High-energy tests of QED
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Simple Approach

» Divide detector
into cylindrical
segments centered
on the track

> Apply
Photorec/MuE
algorithm in these
sub-detectors

> Usually estimate
muon energy by
dropping large
stochastics

Implementations
IceCube: Truncated Energy, DDDDR



Complicated Approach (Millipede)
Observed photon distributions in each OM are a linear combination
from all sources, with distributions from photon MC tables or
parametrizations and normalizations from the energy loss at that

source.
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Unfolding Stochastics

We can deconvolve the stochastic losses by solving the linear

system:
Bi(x1) Ba(x1) -+ Bp(x) E; Ny
Bl (X2) Bz(Xg) cee Bn(Xz) E2 _ N2
Bi(xm) Ba(xm) -+ Bn(xm) E. N,

B;: predicted photon distributions from each muon segment and
shower

E;: energy loss at each muon segment/shower

N;: measured photon counts



Defining the data vector
Simplest case: use absolute amplitudes in each OM (very fast)

Complicated case: make a charge histogram in time, fit amplitudes
in each bin (somewhat slower)

PE / bin

. . —n

0 4. . 8 .
Time (Arbitrary Units)

10/15



High Energy Performance

Type: NuMu

Zen: 36.

A . H
: 11/11 shown, mi (Gevg;
: 10071079 shown, n E(Ge

Differential Energy Reconstruction of 5 PeV Muon in IC-86
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» ~ 1% energy deposition resolution at 1 PeV
» Cascade position resolution =~ a few meters

» Excellent event topology reconstruction



Low Energy Performance

Type: Nubu

Zen: 58.77 deg

Azi: . deg
: 8/8 shown, min E6&V)
: 100/398 shcwn min BEG

» ~ 40% energy deposition resolution at 20 GeV
» Track length to =~

10 meters

Primary energy h_primary
Entries 6911
7] Mean  0.2004
H ;\ 5499
8600}
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Estimating E, from topology

» High Energies
(Uncontained)

> Likelihood Fit to Event
Topology (P(E, E"))

» Provides much
higher-quality fit to
muon energy, since
more information
available

» Work in Progress

{11711 shown, min E(GeV) == 6.
: 1007709 showh, min E(Gev) == 5 03

» Low Energies (Contained)

» Detector a calorimeter:
Add energies

» Excellent energy
resolution (~ 10%),
even approaching the
detector threshold
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Unconventional Uses

All CORSIKA
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Overview

» Scalar Algorithms

» Fast, simple, i
energy

» MuE, Photorec

» Pseudo-Scalar
Algorithms
> Better
energy
» Truncated
Energy,
DDDDR

> Full Segmented
Algorithms
» High-precision
event topology
» MuE-X,
Millipede

NCasc:

Type: NuMuBar
E(Gev):
Zen

1.79e+06

1 32.67 deg
i: 290.48 deg
: 1/1 shown, min E(GeV) == 1791287 30
100/851 shown, min E(GeV} == 10.98




