

Relative Intensity of Cosmic Rays (IC22, IC40 & IC59)

Deletive later eiter	$N_i(\alpha$
Relative Intensity:	$\overline{\langle N_i(\delta) \rangle}$

Relative intensity of the cosmic ray event rate in equatorial coordinates: for each declination belt of width 3°, the

plot shows the number of events relative to the average number of events in the belt.

Year	Rate (Hz)	Livetime (Days)	CR Median Energy (TeV)	Median Angular Resolu tion	Number of Events
2007-IC22	240	226	20	3°	~4×10 ⁹
2008-IC40	780	324	20	3°	~19×10 ⁹
2009-IC59	1200	324	20	3°	~32×10 ⁹

Relative Intensity .0015 .001 IC59 1.001 .000 IC59 .9995 999 IC40 **0**° 360° IC22 **Relative Intensity** 1**C40**/ .001 2005 9995 999 **IC22** 0.9995 .0015 .001 .0005 .9995 .999 .9985 0.999 Abbasi et al., ApJ, 718, L194, 2010 200 250 300 100 150 350 50 Right Ascension (degree) $N_i(\alpha, \delta)$ The 1-D projection of the equatorial relative *Relative Intensity:*

Relative Intensity of Cosmic Rays (IC22, IC40 & IC59)

Relative intensity of the cosmic ray event rate in equatorial coordinates: for each declination belt of width 3°, the plot shows the number of events relative to the average number of events in the belt.

intensity skymap is fitted to a first and second harmonic function of the form

$$\sum_{i=1}^{2} A_i \cos(i(\alpha - \phi_i)) + B$$

Large Scale Anisotropy and Past Results

- •IceCube observed a large scale anisotropy at 10⁻³ level for the first time in the Southern Sky.
- •Large Scale Features appear to be a continuation of those observed in the Northern Hemisphere.

Anisotropy energy dependence with IceCube

Large Scale Anisotropy and Past Results

Amplitude and phase is established experimentally between 10¹¹-10¹⁴eV
Study of the anisotropy evolution in the energy region >10¹⁴ eV can provide an insight to the origin and propagation of cosmic rays.

Large Scale Anisotropy and Past Results

Tibet Array

EAS-TOP

Science314:439-443,2006

arXiv:0901.2740

No Coherent Global Picture in the Northern Hemisphere

6

IC59 CR Energy Dependence (20TeV,400TeV)

Relative Intensity: $\frac{N_i(\alpha,\delta)}{\langle N_i(\delta) \rangle \alpha}$

The anisotropy at 400 TeV shows a substantial difference w.r.t that observed at 20 TeV

IC59 First Detection of Anisotropy at 400 TeV

Statistical Significance:

$$\sqrt{s} \left\{ N_{on} \ln \left[\frac{1+\alpha}{\alpha} \left(\frac{N_{on}}{N_{on}+N_{off}} \right) \right] + N_{off} \ln \left[\left(1-\alpha \right) \left(\frac{N_{off}}{N_{on}+N_{off}} \right) \right] \right\}^{1/2}$$

•Reference map is derived from data with time scrambling

•Smoothing is applied to improve the sensitivity to large features

•Scan from 1°-30° in smoothing radius to optimized for the highest significance regions

•Only a deficit at 21° Smoothing, was identified as a significant structure.

IC59 Anisotropy Energy Dependence (20TeV,400TeV,1PeV)

Submitted to APJ

Small scale anisotropy

IceCube-59 Power Spectrum

- Sky map contains correlations at several angular scales
- Gray bands: 68% and 95% bands of simulated isotropic maps

IceCube-59 Power Spectrum

IC59 Residual Map

• Subtract D+Q fit from relative intensity map, and you get this:

To see more structure, we have to rebin (or "smooth") the map

IC59 Smoothed Residual Map

IC59 (2009-2010)

Comparison of IceCube Data Sets

Discussion

Galactic Compton Getting

The maximum of the anisotropy is 0.35%, with a maximum at right ascension 315° and declination 48° and a minimum at right ascension 135° and declination - 48°.

$$\frac{\Delta I}{\langle I \rangle} = (\gamma + 2) \frac{v}{c} \cos \vartheta$$

 $\gamma = 2.7$ cosmic ray spectral index v = 220 km/s speed

The anisotropy in IceCube data is *not a pure dipole* and does not have the right phase to be explained by the Compton-Getting effect. If the Compton-Getting effect is present in the data, it is overshadowed by a stronger effect.

Studying the effect of varying composition with energy on the anisotropy using propagating models.

Summary

- IceCube data indicate the presence of a significant and persistent anisotropy at large and small angular scales.
- IceCube data also indicates the presence of a significant anisotropy >10¹⁴ eV in the Southern sky.
- The origin of the anisotropy is unknown:
 - The result is not consistent with the CG assuming the galactic cosmic rays at rest with the galactic center.
 - Improved theoretical description of the diffusion processes of galactic cosmic rays closer to the knee.
 - Interstellar Magnetic field.
 - This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.