Searches for Exotic particles with the IceCube detector

M.L. Benabderrahmane, DESY

Introduction

- Dirac introduced the magnetic monopole in order to explain the quantization of the electric charge
 Image: Second Sec
- GUT: Masses of magnetic monopoles ~ masses of X,Y GUT boson: m_M ~10¹⁶ GeV → cannot be accelerated to relativistic velocities
- MMs are produced during phase transitions in the early universe
- Intermediate-Mass Monopoles (IMM) with m_M=10⁵-10¹⁵ GeV may have been produced in later GU phase transitions
- → IMM can be accelerated to relativistic velocities by the galactic magnetic field

Search methods: Relativistic Monopoles

Cherenkov emission ~8400 times more than a bare muon

Searches for relativistic monopoles with IC22

R Christy & I Possolt

B. Christy & J. Posselt	
Data set	Data processing
Signal:	- Used variables are based on Saturated
Monopoles with	Hits in the fADC
•	\rightarrow Bright events, hits close to the track
- β = 0.76,0.8,0.9 & 0.995	> Dright events, this close to the track
- isotropic flux	- Level0: Online filter, selects events with N_OMs>80
 Background: – Corsika 	- Level1: data reduction filter, keep events with N_Saturated_Hits >1
 Neutrino: NuE and NuMu 	- Level2: Hit cleaning based on times of Saturated Hits
 Burn sample 	- Level3: remove poorly reconstructed events

Optimazation and final cut

 The final cut is, linear cut on the number of bright (saturated) hits, NSAT, and the zenith angle, reconstructed from LineFit

- In the upgoing region, the cut is flat in NSAT
- In the downgoin region, NSAT cut increases linearly with $\cos(\vartheta)$
- Final cut is set using the Model Rejection Factor

Sensitivities

Slowly moving particles(SLOPs)

SLOPs: GUT Monopoles, Q-Balls and Nuclearites

- GUT Monopoles
 - Predicted by GUT theories
 - $M_M ≥ m_x / α_{GUT} ~ 10^{16} 10^{17} GeV$
- Q-balls
 - Heaviest Dark Matter Candidates of SUSY theories
 - Aggregates of squarks, sleptons and Higgs field.
 - $-10^{5}\,\text{GeV} < M_Q < 10^{22}\,\text{GeV}$
- Nuclearites (Strange Quark Matter)
 - Almost equal proportion of u, d and s quarks
 - Should be stable for baryon number $300 < A < 10^{57}$

Phase space parameters

Variables used for this analysis

- During the 2009 season no dedicated filter was deployed for SLOPs,
 → use events originating from all available filters
- Look for events with long event time duration

Variables used for MVA

- Mean distance of Hitposition from COG
- σ (distance of Hits to COG)
- LineFit velocity
- Nclusters: is the number of hits within a causal distance of 225m
- Combine event time duratrion and NPE or mean distance from COG

Applying BDT scores to the Burn sample

- The burn sample has 31.7 days, about 10% of the whole year
- At Level4 the data rate is ~ 0.1 Hz

Searches for SLOPs with IC79

E. Jacobi

Trigger for SLOPs

T. Glüsenkamp, E.Jcobi & C.Wiebusch

- Implemented already at Pole
- Uses HLC pairs as input
 - Clean early HLC (from µ's)
 - Find correlation in space and time between HLCs pairs in an open time window [0, 0.5ms]
- It is running for DeepCore with 1Hz rate
- A trigger proposal for full IceCube will be submited to the TFT board

Direct SUSY searches with IceCube

S. kopper

- Certain SUSY models predict existance of metastable NLSP
- Stau energy loss is suppressed by 1/m_{stau}
- Depending on SUSY breaking scale, Staus can have long range ~10-10⁵ km
 → Large effective volume Signal
- Due to high boost factor:
 - Tracks appear in IceCube as parallel traks
 - Tracks are separted by d>100m

$\nu + N \rightarrow \tilde{l} + \tilde{q} + \dots \rightarrow \tilde{\tau} + \tilde{\tau}$ l/m_{stau}

Neutrino ($E_v > 100 TeV$)

km2 stausSignal: pair of parallel charged tracks

Summary

- Best limit for Reltivistic Monopoles (0.8< β <0.999) obtained with IC22 Φ < 3.3•10⁻¹⁸cm⁻²s⁻¹sr⁻¹
- SLOPs (GUT monopoles & Q-Balls) searches with IC59 will be unblined soon
- Searches for SLOPs with IC79 ($\sigma_0 < 10^{-28}$ cm²) is ongoing. For $\sigma_0 > 10^{-28}$ cm², analysis will start by the end of this year
- SLOPs trigger is installed at Pole for DeepCore and taking data (for IC86)
- Extension of the SLOP trigger for the whole detector next season
- Direct SUSY searches are ongoing