INTRODUCTION
ANALYSIS AND RESULTS
CONCLUSIONS

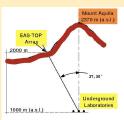
A measurement of the cosmic ray anisotropy at and above $10^{14} \, \text{eV}$

ONCE UPON A TIME: THE EAS-TOP ARRAY

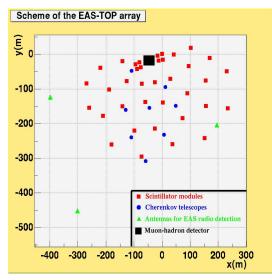
Piera L. Ghia¹ for the EAS-TOP Collaboration

¹LPNHE-CNRS, Paris, France

Anisotropy Workshop, 28-29 October 2011, Madison, USA


EAS-TOP Collaboration: M. Aglietta, V.V. Alekseenko, B. Alessandro, P. Antonioli,
F. Arneodo, L. Bergamasco, M. Bertaina, R. Bonino, C. Castagnoli, A. Castellina,
A. Chiavassa, G. Cini, B. D'Ettorre Piazzoli, G. Di Sciascio, W. Fulgione, P. Galeotti, P.L. Ghia,
M. Iacovacci, G. Mannocchi, C. Morello, G. Navarra, O. Saavedra, A. Stamerra,
G.C. Trinchero, S. Valchierotti, P. Vallania, S. Vernetto, C. Vigorito

OUTLINE


- Introduction
 - A brief history
 - The EAS-TOP array
 - Why studying CR anisotropies at EAS-TOP
- ANALYSIS AND RESULTS
 - Early results
 - Final analysis and results
- 3 Conclusions

A BRIEF HISTORY

- EAS-TOP was conceived in the "Cygnus X-3 era", at the end of 1980s. With other experiments born at the same time (CASA, CYGNUS, HEGRA, Tibet AS γ) was meant to do γ -ray astronomy at 100 TeV (i.e., to find the sources of hadronic cosmic-rays)
- Located above the Gran Sasso Laboratories, EAS-TOP was in fact mainly intended to study all aspects of galactic cosmic rays in the "knee" region: spectrum, composition, anisotropies.
- It was a "multi-component" detector, including an array of scintillators, a muon-hadron calorimeter, Cherenkov telescopes, radio antennas. It could detect EAS in coincidence with the TeV muon detectors underground

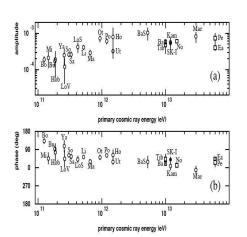
EAS-TOP scheme

- Located at Campo Imperatore (2005 m a.s.l., lat. 42.4°, long. 13.6°) above the Gran Sasso Laboratory
- EAS array + muon-hadron calorimeter + Cherenkov telescopes + radio antennas
- EAS array: 35 scintillator modules (10m² each) over an area of about 10⁵ m²
- 4-fold trigger mode, rate $\approx 30 \text{ Hz}$
- Median energy $\approx 100 \text{ TeV}$

THE EAS-TOP ARRAY - winter view

A BRIEF HISTORY
THE EAS-TOP ARRAY
WHY STUDYING CR ANISOTROPIES AT EAS-TOP

THE EAS-TOP ARRAY - summer view



View post EAS-TOP

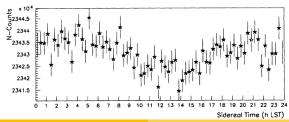
EAS-TOP was de-commissioned in 2000 due to an Italian law for environment protection. Its scintillators were added to Kascade (FZK, Karlsrhue, Germany) to build the Kascade-GRANDE array

LARGE SCALE ANISOTROPY AND RESULTS BEFORE EAS-TOP

- The amplitude and phase of the CR anisotropy were well established experimentally between 10^{11} eV and 10^{13} eV (by EAS arrays and underground μ detectors)
- Amplitude and phase rather constant over this energy range: (A: $(3 \div 6) 10^{-4}$); ϕ : $((0 \div 4) \text{ h LST})$
- At higher energies (100 TeV and above) the anisotropy could provide an indication on the origin of the "knee" of the spectrum

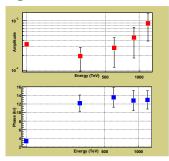
A BRIEF HISTORY
THE EAS-TOP ARRAY
WHY STUDYING CR ANISOTROPIES AT EAS-TOP

LARGE SCALE ANISOTROPY AND THE KNEE


Composition studies have shown that the knee is related to the steepening of the lightest primaries (protons, helium, CNO). Possible reasons for the knee:

- Energy limits of the acceleration process at the source, e.g. diffusive shock acceleration in supernova remnants
- Change in the properties of CR propagation inside the Galaxy, described through diffusion models.
- CR diffusion parameters obtained through composition studies (mainly from the ratio of secondary to primary nuclei) at energies well below 1 TeV.
- The diffusion coefficient, D, is found to increase with magnetic rigidity $(D \propto R^{0.6})$, or $D \propto R^{0.3}$ for models including reacceleration).
- The main observable at higher energies is the large scale anisotropy, related to the diffusion coefficient.

The study of the evolution of the anisotropy in the "knee" region can provide a test of diffusion models, and an insight for the discrimination between the two possible explanations of the knee.


MEASUREMENT AT 100 TeV (Ap. J, 470 (1996) 501)

- 4 years of data (1990-1994). Number of events: 1.3×10^9
- Harmonic analysis on data corrected for atmospheric effects
- Observation of significant anisotropy (6 " σ " level) in sidereal time $(A_{sid} = (3.6 \pm 0.6) \ 10^{-4}, \phi_{sid} = (2.8 \pm 0.6) \ h \ LST)$
- Observation of $\cos \delta$ dependence of the amplitude
- Observation at 7 " σ " level of the expected Compton Getting effect (due to Earth revolution around Sun) in solar time
- Absence of anti-sidereal signal
- EAS-TOP extended the anisotropy measurement up to 100 TeV, showing the constancy (in amplitude and phase) with respect to lower energy ones

MEASUREMENT ABOVE 100 TeV (ICRC 2003)

- 8 years of data (1992-1999). Number of events: 2×10^9
- Harmonic analysis on data corrected for atmospheric effects
- 5 energy bins (from 100 TeV to 1200 TeV)
- 100 TeV: observation of significant anisotropy (10 " σ " level) in sidereal time ($A_{sid}=(3.4\pm0.3)\ 10^{-4},\ \phi_{sid}=(3.3\pm0.4)\ h\ LST)$
- ullet 100 TeV: observation at 7 " σ " level of the expected Compton Getting effect (due to Earth revolution around Sun) in solar time
- Change of phase above 300 TeV, but amplitudes not significant
- Absence of anti-sidereal signal
- Upper limits set at energies above 300 TeV

THE EAST-WEST METHOD (Ap.J 738 (2011) 67)

Based on counting rate differences between East and West directions, allowing to remove variations of atmospheric origin

$$rac{dI}{dt} \simeq rac{C_E(t) - C_W(t)}{\delta t}$$

 $C_{E,W}(t)$ =n. of counts from the East, West sectors in $\Delta t=20$ min

I=total intensity

 δt =1.7 h = average hour angle between the vertical and each of the two sectors

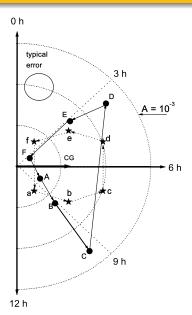
The integrated wave shape:

$$I(t_{N_{int}}) = rac{\Delta t}{N_{int}} \sum_{i=1}^{N_{int}} i rac{C_E(i) - C_W(i)}{\delta t} + \langle I
angle$$

where $N_{int} = 72$ intervals of solar / sidereal / anti-sidereal time and $t_{N_{int}} = N_{int} \cdot \Delta t$.

- Harmonic analysis on the differences $D(i) = C_E(i) C_W(i)$
- Differential amplitude and phase are transformed into the integral ones: $r_I = \frac{r_D}{\delta t}$ and $\phi_I = \phi_D + \frac{\pi}{2}$
- Uncertainties on r_I and ϕ_I : $\sigma_{r_I} = \frac{1}{\delta t} \sqrt{\frac{2}{N_{FW}}}$ and $\sigma_{\phi_I} = \frac{\sigma_{r_I}}{r_I}$
- Rayleigh imitation probability: $P = exp\left(-\frac{r_L^2}{2\sigma_-^2}\right)$

THE FINAL DATASET


Class	$N_{modules}$	E_0 [eV]	N_{EW}
I	≥ 4	$1.1 \cdot 10^{14}$	$1.5 \cdot 10^9$
II	≥ 12	$3.7 \cdot 10^{14}$	$1.7 \cdot 10^{8}$

- 1431 full days between January 1992 and December 1999
- Counting rates every 20 min
- ϕ inside $\pm 45^{\circ}$ around the East and West directions
- $\theta < 40^{\circ}$
- Two primary energies: cuts in number of triggered modules (E_0 evaluated for primary protons and QGSJET01 hadron interaction model in CORSIKA)
- East-West analysis

HARMONIC ANALYSIS AT 100 and 400 TeV (Ap. J, 692 (2009) L130)

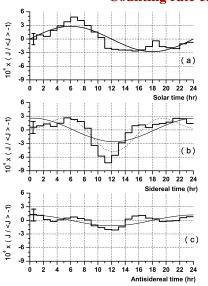
AT 1.1×10^{14} eV $\frac{A_{sol} \ 10^{4} \quad \phi_{sol}[h] \quad P(\%) \quad A_{sid} \ 10^{4} \quad \phi_{sid}[h] \quad P(\%) \quad A_{asid} \ 10^{4} \quad \phi_{asid}[h] \quad P(\%)}{2.8 \pm 0.8 \quad 6.0 \pm 1.1 \quad 0.2 \quad 2.6 \pm 0.8 \quad 0.4 \pm 1.2 \quad 0.5 \quad 1.2 \pm 0.8 \quad 23.9 \pm 2.8 \quad 32.5}$

- Solar time analysis: amplitude and phase in excellent agreement with expected Compton-Getting effect at our latitude, $A_{sol,CG} = 3.0 \ 10^{-4}$, $\phi_{sol,CG} = 6.0 \ h$.
- Sidereal time analysis: amplitude and phase (chance probability 0.5%) consistent with our previous results
- Anti-sidereal time analysis: no significant amplitude. No additional correction is thus required due to residual seasonal effects

Bi-monthly solar vectors of the I harmonic (black dots), and expected ones (black stars) from the measured solar and sidereal amplitudes.

- Expected anti-clockwise rotation of the solar vector clearly visible
- Instantaneous observed anisotropy = combination of solar and sidereal vectors
- Expected and measured rotations fully compatible within the statistical uncertainties

HARMONIC ANALYSIS AT 100 and 400 TeV (Ap. J, 692 (2009) L130)

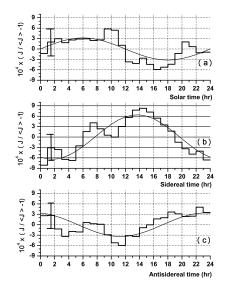

- Solar time analysis: significance of the first harmonic rather marginal (due to reduced statistics), but amplitude and phase still consistent with the Compton-Getting effect.
- **Sidereal time analysis**: indication of change of phase (from 0.4 to 13.6 h) and increase in amplitude by a factor 2.5 (chance probability 3.8%)
- Anti-sidereal time: no significant amplitude

SECOND HARMONIC ANALYSIS

				$A_{sid} 10^4$					
				2.3 ± 0.8					
370	1.7 ± 2.5	-	79.4	1.5 ± 2.5	-	83.5	1.2 ± 2.5	-	89.1

- Significant amplitude in sidereal time at 1.1×10^{14} eV (comparable with the first harmonic one: $A^{II} = (2.3 \pm 0.8) \ 10^{-4}$, $\phi^{II} = (6.3 \pm 0.7)$ h LST, P = 1.6%)
- No other effects observed

Counting rate curve at 1.1×10^{14} eV



• Solar wave: Compton-Getting effect clearly seen

 Sidereal wave: shape in remarkable agreement with previous measurements (EAS and underground muon detectors)

 Anti-sidereal wave: no significant modulation.

Counting rate curves at 3.7×10^{14} eV

• Solar wave: Compton-Getting effect still visible

• Sidereal wave: rather different from the one at 100 TeV: broad excess around 13-16 h LST, and increased amplitude

Anti-sidereal wave: no significant modulation

Final EAS-TOP results on large scale CR anisotropy

- confirms amplitude and phase of CR anisotropy at 10^{14} eV: $A_{sid}^{I} = (2.6 \pm 0.8) \cdot 10^{-4}$, $\phi_{sid}^{I} = (0.4 \pm 1.2)$ h LST, with Rayleigh imitation probability $P_{sid}^{I} = 0.5\%$
- The result is supported by the observation of the Compton-Getting effect due to the revolution of the Earth around the Sun, and by the absence of anti-sidereal effects
- It confirms the homogeneity of the anisotropy data over the energy range 10¹¹-10¹⁴ eV
- At higher energies (around 4×10^{14} eV) the anisotropy shows a larger amplitude, $A^I_{sid} = (6.4 \pm 2.5) \times 10^{-4}$, and a different phase, $\phi^I_{sid} = (13.6 \pm 1.5)$ h LST, with an imitation probability of 3.8%.

Final EAS-TOP results on large scale CR anisotropy

- Dependence of the anisotropy amplitude over primary energy $(A \propto E_0^{\delta})$ from the two EAS-TOP measurements: $\delta = 0.74 \pm 0.41$.
- At least in the energy range $(1-4) \cdot 10^{14}$ eV, dependence compatible with that of the diffusion coefficient as derived by composition measurements at lower energies
- Sharp increase of the anisotropy above 10^{14} eV (i.e. approaching the "knee") indicative of a sharp evolution of the propagation properties, and therefore of the diffusion coefficient?
- Or sharp increase (and change of phase) due to large fluctuations induced in the CR flux from local sources? (Blasi and Amato, arXiv:1105.4529)?
- Open problems:
 - will we succeed one day to get a theoretical description of the whole evolution of the diffusion processes vs E, and to understand its impact on the energy spectra at the "knee"?
 - wouldn't it be of crucial significance to extend anisotropy measurements (with high sensitivity) to and above 10¹⁵ eV?