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A BRIEF HISTORY

@ EAS-TOP was conceived in the “Cygnus X-3 era”, at the end 80%9 With
other experiments born at the same time (CASA, CYGNUS, HEGRifet
ASy) was meant to dg-ray astronomy at 100 TeV (i.e., to find the sources
hadronic cosmic-rays)

@ Located above the Gran Sasso Laboratories, EAS-TOP wastiménly
intended to study all aspects of galactic cosmic rays in kineé” region:
spectrum, composition, anisotropies.

@ It was a “multi-component” detector, including an array oifillators, a
muon-hadron calorimeter, Cherenkov telescopes, radenaas. It could
detect EAS in coincidence with the TeV muon detectors unmdergl

| Mount Aquila
2370 m (a.s.1.)

EAS-TOP

27,300

| Underground
Laboratories
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THE EAS-TOPARRAY

WHY STUDYING CR ANISOTROPIES ATEAS-TOP

[ Scheme of the EAS-TOP array |

EAS-TOP scheme

£
= o nm :
.l
L Ll o«
u [
[ LN I
=100 " Ccacites
u [ ]
= n L ° L] u
L] ]
-200 .
[ ]
. J "
L - a
-300— e
-400 ® Scintillator modules
L ; ® Cherenkov telescopes
-500 Il Muon-hadron detector
S IR I | | S S

-400 -300 -200 -100 O

100 200 300
x(m)

P.L. GHIA

Located at Campo
Imperatore (2005 m a.s.l.,
lat. 42.4, long. 13.6) above
the Gran Sasso Laboratory

EAS array + muon-hadron
calorimeter + Cherenkov
telescopes + radio antennas

EAS array: 35 scintillator
modules (10rheach) over an
area of about 10m?

4-fold trigger mode, rate
~ 30 Hz

Median energyx 100 TeV

~
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THE EAS-TOP ARRAY - winter view
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THE EAS-TOP ARRAY - summer view
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View post EAS-TOP

EAS-TOP was de-commissioned in 2000 due to an Italian lawefieironment
protection. Its scintillators were added to Kascade (FZKrl8thue, Germany) to
build the Kascade-GRANDE array
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LARGE SCALE ANISOTROPY AND RESULTS BEFORE EAS-TOP
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@ The amplitude and phase of the CR
anisotropy were well established
experimentally between tbeV and
10" eV (by EAS arrays and
underground. detectors)

@ Amplitude and phase rather constal
over this energy range: (A:
(3= 6)107%); ¢: (0= 4) hLST)

@ At higher energies (100 TeV and
above) the anisotropy could
provide an indication on the origin

nt

of the “knee” of the spectrum
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LARGE SCALE ANISOTROPY AND THE KNEE
Composition studies have shown that the knee is relatecetstéepening of the
lightest primaries (protons, helium, CNO). Possible reador the knee:

@ Energy limits of the acceleration process at the source géfgsive shock
acceleration in supernova remnants

@ Change in the properties of CR propagation inside the Gatiescribed
through diffusion models.

@ CR diffusion parameters obtained through compositionistu@nainly from
the ratio of secondary to primary nuclei) at energies wdthvel TeV.

@ The diffusion coefficientD, is found to increase with magnetic rigidity
(D x R%8, or D < R%2 for models including reacceleration).

@ The main observable at higher energies is the large scaletempy, related to
the diffusion coefficient.

The study of the evolution of the anisotropy in the “knee”ioegcan provide a test of
diffusion models, and an insight for the discriminationvibetn the two possible
explanations of the knee.
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MEASUREMENT AT 100 TeV (Ap. J, 470 (1996) 501)

® 4 years of data (1990-1994). Number of event&: x4 10°

@ Harmonic analysis on data corrected for atmospheric affect

@ Observation of significant anisotropy (6™ level) in sidereal time
(Asa = (3.6 0.6) 10°*, pga = (2.8 0.6) h LST)

@ Observation of casdependence of the amplitude

@ Observation at 74" level of the expected Compton Getting effect (due to
Earth revolution around Sun) in solar time

@ Absence of anti-sidereal signal

@ EAS-TOP extended the anisotropy measurement up to 100 Te\hswing
the constancy (in amplitude and phase) with respect to loweenergy ones
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MEASUREMENT ABOVE 100 TeV (ICRC 2003)

8 years of data (1992-1999). Number of eventsc 20°

Harmonic analysis on data corrected for atmospheric sffect

5 energy bins (from 100 TeV to 1200 TeV)

100 TeV: observation of significant anisotropy (10'‘level) in sidereal time

(Agq = (344 0.3) 1074, pgq = (3.3 0.4) hLST)

100 TeV: observation at %" level of the expected Compton Getting effect (due to Earth
revolution around Sun) in solar time

Change of phase above 300 TeV, but amplitudes not significant

Absence of anti-sidereal signal

Upper limits set at energies above 300 TeV
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THE EAST-WEST METHOD (Ap.J 738 (2011) 67)

d Ce(t) — Cw(t) The integrated wave shape:
d — ot N . .
Cew(t)=n. of counts from the East,West _ At~ Ce(i) — Cwl(i)
WA= . H(tng) = 5= D i————— + (1)
sectors inAt=20 min Nint — ot

I=total intensity ) )
§t=1.7 h = average hour angle between the whereNiy = 72 intervals of solar / sidereal
vertical and each of the two sectors / anti-sidereal time antl,, = Nint - At.

@ Harmonic analysis on the differencBs$i) = Cg(i) — Cw(i)
o Differential amplitude and phase are transformed into the
integral onesr; = 2 and¢; = ¢p + 5

e Uncertainties om and¢: oy, = & ﬁ andog = Tt

o Rayleigh imitation probabilityP = exp (—%)
n
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THE FINAL DATASET

Class Nmodues Eo[eV] New
| >4 11-10% 15.-10°
Il >12 37-10“4 1.7-1C°

1431 full days between January 1992 and December 1999
Counting rates every 20 min

¢ inside+45° around the East and West directions

0 < 40

Two primary energies: cuts in number of triggered modulgs (
evaluated for primary protons and QGSJETO01 hadron inieract
model in CORSIKA)

East-West analysis
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HARMONIC ANALYSIS AT 100 and 400 TeV (Ap. J, 692 (2009) L130)

Ao 10" ¢u[N] PO6) Asa 10°  ¢sa[n] P(%) Awsa 107 ¢asa[n] P(%)
28+08 60+11 02]|26+08 04+12 05| 12+08 239+28 325

@ Solar time analysis amplitude and phase in excellent
agreement with expected Compton-Getting effect at outulz
Aslce = 3.0 1074, ¢gy.cc = 6.0 h.

o Sidereal time analysis amplitude and phase (chance probability
0.5%) consistent with our previous results

o Anti-sidereal time analysis no significant amplitude. No
additional correction is thus required due to residual @eals
effects
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0h

fypical N . —

error e ; Bi-monthly solar vectors of the | harmonic (black
- . dots), and expected ones (black stars) from the
A= 10° measured solar and sidereal amplitudes.

o Expected anti-clockwise rotation
of the solar vector clearly visible

@ Instantaneous observed
anisotropy= combination of
solar and sidereal vectors

o Expected and measured rotations
fully compatible within the
statistical uncertainties

6h

12h
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HARMONIC ANALYSIS AT 100 and 400 TeV (Ap. J, 692 (2009) L130)

Ag 100 po[n] P(%) Ada 10"  ¢sa[n] P(%6) Awsia 10°  pasa[n] P(%)
324+2560+34 441/64+25 1364+ 15 38|34+25223+3.2 397

@ Solar time analysis significance of the first harmonic rather
marginal (due to reduced statistics), but amplitude andelséll
consistent with the Compton-Getting effect.

o Sidereal time analysis indication of change of phase (from 0.4
to 13.6 h) and increase in amplitude by a factor 2.5 (chance
probability 3.8%)

o Anti-sidereal time: no significant amplitude
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SECOND HARMONIC ANALYSIS

Eo | Aw 107  ¢ai[h] P(%) Asa 100 ¢sd[h] P(%) Aasa 100 ¢asa[h] P(%)
(TeV

110{1.4+ 0870+ 12 216/23+0863+0.7 16[{06+08 - 755
370|1.7+25 - 794/ 15+ 25 - 835/12+25 - 891

@ Significant amplitude in sidereal time atllx 10** eV
(comparable with the first harmonic on&" = (2.3+0.8) 1074,
¢! = (6.3+0.7) hLST,P = 1.6%)

@ No other effects observed
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Counting rate curve at1.1 x 101 eV

L T @ Solar wave Compton-Getting

(a) effect clearly seen
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@ Solar wave Compton-Getting
effect still visible

o Sidereal wave rather different
from the one at 100 TeV: broad
excess around 13-16 h LST, and
increased amplitude

o Anti-sidereal wave no
significant modulation
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Final EAS-TOP results on large scale CR anisotropy

e confirms amplitude and phase of CR anisotrapy.0** eV:
ALy = (26+0.8) 1074, ¢y = (0.4+1.2) hLST, with
Rayleigh imitation probabilityPl,; = 0.5%

@ The result is supported by tldservation of the
Compton-Getting effectdue to the revolution of the Earth
around the Sun, and by tlsence of anti-sidereal effects

@ It confirms the homogeneity of the anisotropy data over the
energy range 10-10'“ eV

@ At higher energies (around4 x 10 eV) the anisotropy shows
a larger amplitude, A, = (6.4 & 2.5) x 1074, and a different
phase sl = (13.6 + 1.5) h LST, with an imitation
probability of 3.8%.
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Final EAS-TOP results on large scale CR anisotropy

Dependence of the anisotropy amplitude over primary engkgy EJ) from
the two EAS-TOP measurements= 0.74 + 0.41.

At least in the energy rangd — 4) - 10 eV, dependence compatible with that
of the diffusion coefficient as derived by composition meaments at lower
energies

Sharp increase of the anisotropy abov&*HY (i.e. approaching the “knee”)
indicative of a sharp evolution of the propagation propsitand therefore of
the diffusion coefficient ?

Or sharp increase (and change of phase) due to large flmtsatiduced in the
CR flux from local sources? (Blasi and Amato, arXiv:11058)52

Open problems:

e will we succeed one day to get a theoretical description®f th
whole evolution of the diffusion processes vs E, and to
understand its impact on the energy spectra at the "knee"?

o wouldn't it be of crucial significance to extend anisotropy
measurements (with high sensitivity) to and abov® 8¥/ ?
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