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New interest in an old problem:
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Scattering of energetic particles by MHD waves

Milagro TeV-observatory newly sparked interest in energetic particle 

propagation after a remarkable discovery of a sharp CR arrival anisotropy

www.lanl.gov/milagro



Milagro TeV-observatory
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• Water Cerenkov telescope with 723 photomultipliers

• Capability to distinguish between nuclei (protons) and 
gamma-rays

• < 1 deg angular resolution at 1 TeV 

• 7 yr of data 

Color =significance

Abdo et al ‘08



IceCube

4http://icecube.wisc.edu/

(ApJ, Oct . 2011)

http://icecube.wisc.edu/


Some Details of Milagro observations
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• Sharp beam~10o (beam A)

• Large scale angular anisotropy ~10-3

• Sharp anisotropy ~10-4 (fractional excess) 

• Energy range of the beam 1-10TeV

• The spectrum is somewhat flatter than the background



Characteristics of the beam to explain

• The width ~10o (beam A)

• Fractional excess (~0.1 of the large scale angular anisotropy)

• Cut-off momentum 10 TeV  

• Spectral index of the beam (harder than that of the 
background CR)

 Beam phase space density, integrated over its angular 
distribution
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Suggested explanations
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Drury  & Aharonian ‘08

Magnetic nozzle

Lazarian & Desiati ’10

Reconnection in Heliotail

Salvati & Sacco‘08
SN explosion resulted 

in Geminga pulsar

M, Diamond, Drury  & Sagdeev‘10
GS-turbulence with outer scale ~few pc

Source possible but collimation 

mechanism is not explained
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Find no conceptual problem but the 

nozzle mirror ratio should be ~100
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Collimation – ok  but maximum rigidity 

based on the Hillas criterion 20 GV

Hillas criterion (E<BVR): not written in stone: M, Sagdeev, Diamond 2011

arXiv:1101.4958 cycling through acceleration zone of size R (‘betatron’ acceleration) 

Propagation 

too fast(?)

http://arxiv.org/abs/1101.4958


Basic ideas

• Earth is magnetically connected with  unspecified CR 
accelerator, such as a SNR shock or any ‘accelerator’; even a 
large scale anisotropy may suffice

• Flux tube is filled with CRs and MHD waves  associated with 
the accelerator (waves may also be from the ISM background 
turbulence); only the outer scale of the cascade matters

• MHD cascade is strongly anisotropic (GS)
(Goldreich & Sridhar ’95;Montgomery & Turner 81; Shebalin, Matthaeus & 

Montgomery 83; Matthaeus, Bieber, & Zank’95)
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SNR

Accelerator

HeliosphereMagnetic field

Assumptions 



Particle transport in MHD turbulent plasma

• Studied starting from early 60’s: Sagdeev & Shafranov ’61; Vedenov, Velikhov, 
Sagdeev ‘62; Rowlands, Shapiro & Shevchenko ’66

 Jokipii ’66 – relevant astrophysical context

• Anisotropic turbulence (GS) modifies transport: Chandran ‘00
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 Pitch-angle 

scattering 

frequency



Can peaked pitch-angle scattering collimate a beam?

• seems unlikely: for long propagation, even weak or peaked scattering 
should smear out all sharp anisotropies: transient effect
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 spectral problem of particle 

propagation has  singular points at 

|μ|=1

 ln(1- μ) term should appear just 

outside μ≈1 region (outer solution, 

while inner solution remains regular)

 μ≈1 has deficit of particles in the 

regular part of eigenfunction (large 

scale anisotropy)

 ln –term fills this dip locally which 

appears as a bump on the large 

scale anisotropic distribution
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Key steps of analysis

 sum up Bessel series

 get uniformly valid representation of D including μ≈1 

 consider transport problem
-outer scale 
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 convert to eigenproblem

by applying BC 

 for D=1 well studied equation (Richardson 1918), also occurs in particle 

acceleration at relativistic shock, e.g. Kirk & Schneider ‘87

 complete set of orthogonal eigenfunction:
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• once the set of eigenfunctions is complete, use it in solving 

perturbed problem 
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Distance to the source

Large scale anisotropy (first eigenfunction of the CR propagation problem)  decays 

along the flux tube due to p-a scattering:

small parameter of the theory:

 max distance
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Beam energy window

 cyclotron instability may spread the beam

 but: CR isotropic background stabilizes

 beam energy window and spectral slope constrained  

• beam curvature drift across the flux tube is weak for the distance limit inferred

Why window?
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Outer scale

Two approaches:

I. We obtained 

 angular width

 fractional excess

 maximum momentum 

as functions of the outer scale l

To agree with Milagro results all tree consistently indicate  

II. Assume the turbulence is driven by escaping CR from a SNR at

To recover the same outer scale, it is necessary to assume 

‘knee’ energy!
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Results and conclusions

Assuming: 

large scale anisotropic distribution of CRs (at a putative source, e.g. SNR)

anisotropic cascade of Alfvenic turbulence originating at scale l

Calculated:

- propagation of the CRs down their gradient along interstellar magnetic field
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CR distribution develops angular shape consisting of 

large scale anisotropic part 

beam, tightly focused along local field direction

large scale part has the spectral index of background CRs

beam angular width 

Surprising findings:

 beam fractional excess relative to background CRs

If all these parameters are consistent with Milagro findings and the 

beam maximum energy also matches Milagro’s 10TeV cut-off

 required 1pc outer scale naturally occurs as a cyclotron instability  scale of 

CRs at the ‘knee’ energy of 3 PeV
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Heliotail

How to make three beams out of one?

TS

SUN

B
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Neutral sheet

CR beam

Opposite 

polarity (beam deflection)


