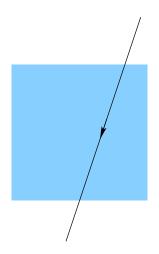
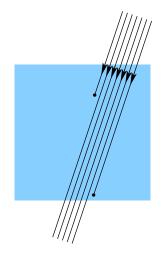
David J. Boersma

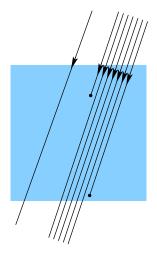

The IceCube Project

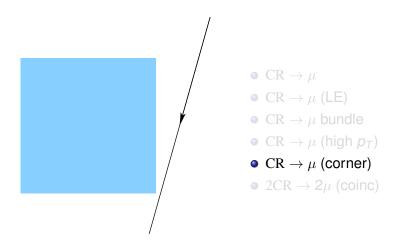
July 30 MMX, Aachen

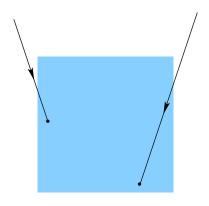
- **Event Types**
 - Cosmic ray muons
 - Neutrinos
 - Exotics
- Triggers and Filters (recap)
 - Triggers
- From raw data to pulses
- Processing steps: Hit cleaning
- Reconstruction
 - Optical Properties of Antarctic Ice



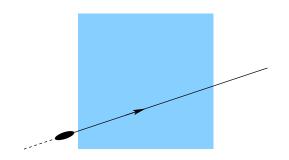
- $CR \rightarrow \mu$
- CR $\rightarrow \mu$ (LE)
- ullet CR $o \mu$ bundle
- CR $\rightarrow \mu$ (high p_T)
- $CR \rightarrow \mu$ (corner)
- 2CR \rightarrow 2 μ (coinc)


Event Types (1): cosmic ray muons

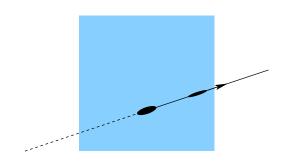

- $CR \rightarrow \mu$
- $CR \rightarrow \mu$ (LE)
- $CR \rightarrow \mu$ bundle
- $CR \rightarrow \mu \text{ (high } p_T)$
- $CR \rightarrow \mu$ (corner)
- 2CR \rightarrow 2 μ (coinc)

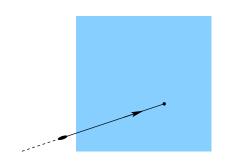


- CR $\rightarrow \mu$
- CR $\rightarrow \mu$ (LE)
- $CR \rightarrow \mu$ bundle
- CR $\rightarrow \mu$ (high p_T)
- $CR \rightarrow \mu$ (corner)
- 2CR \rightarrow 2 μ (coinc)



- CR $\rightarrow \mu$
- CR $\rightarrow \mu$ (LE)
- ullet CR $o \mu$ bundle
- CR $\rightarrow \mu$ (high p_T)
- $CR \rightarrow \mu$ (corner)
- 2CR \rightarrow 2 μ (coinc)



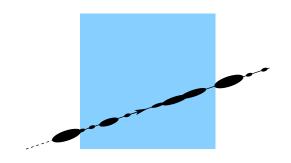

- $CR \rightarrow \mu$
- CR $\rightarrow \mu$ (LE)
- ullet CR $o \mu$ bundle
- CR $\rightarrow \mu$ (high p_T)
- $CR \rightarrow \mu$ (corner)
- $2CR \rightarrow 2\mu$ (coinc)

- \bullet $\nu_{\mu} \rightarrow \mu$
- $\nu_{\mu} \rightarrow \mu$ (HE)
- \bullet $\nu_e \rightarrow e$
- $\nu_e \rightarrow e$ (HE: LPM)
- \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \mu$
- $\nu_{\tau} \rightarrow \tau \rightarrow e$
- \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$

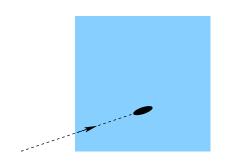
- \bullet $\nu_{\mu} \rightarrow \mu$
- $\nu_{\mu} \rightarrow \mu \; (HE)$
- \bullet $\nu_e \rightarrow e$
- $\nu_e \rightarrow e$ (HE: LPM)
- \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \mu$
- $\nu_{\tau} \rightarrow \tau \rightarrow e$
- $\bullet \ \nu_{\tau} \to \tau \to \nu_{\tau}$

$$\bullet$$
 $\nu_{\mu} \rightarrow \mu$

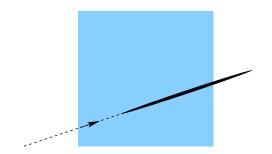
•
$$\nu_{\mu} \rightarrow \mu$$
 (HE)

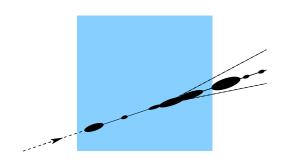

•
$$\nu_e \rightarrow e$$

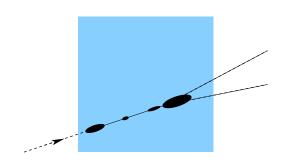
•
$$\nu_e \rightarrow e$$
 (HE: LPM)

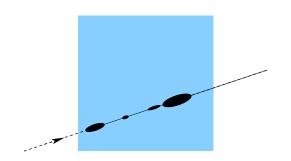

$$\bullet$$
 $\nu_{\tau} \rightarrow \tau \rightarrow \mu$

•
$$\nu_{\tau} \rightarrow \tau \rightarrow e$$

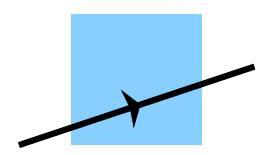

$$\bullet$$
 $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$


- \bullet $\nu_{\mu} \rightarrow \mu$
- $\nu_{\mu} \rightarrow \mu$ (HE)
- \bullet $\nu_e \rightarrow e$
- $\nu_e \rightarrow e$ (HE: LPM)
- \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \mu$
- $\nu_{\tau} \rightarrow \tau \rightarrow e$
- \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$

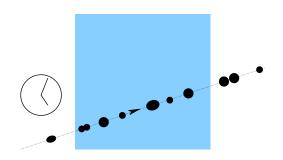

- \bullet $\nu_{\mu} \rightarrow \mu$
- $\nu_{\mu} \rightarrow \mu \text{ (HE)}$
- $\nu_e \rightarrow e$
- $\nu_e \rightarrow e$ (HE: LPM)
- \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \mu$
- $\nu_{\tau} \rightarrow \tau \rightarrow e$
- \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$


- \bullet $\nu_{\mu} \rightarrow \mu$
- $\nu_{\mu} \rightarrow \mu \; (HE)$
 - \bullet $\nu_e \rightarrow e$
 - $\nu_e \rightarrow e$ (HE: LPM)
 - \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \mu$
- \bullet $\nu_{\tau} \rightarrow \tau \rightarrow e$
- $\bullet \ \nu_{\tau} \to \tau \to \nu_{\tau}$

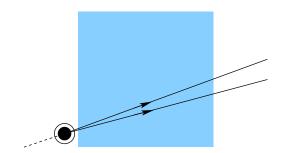
- \bullet $\nu_{\mu} \rightarrow \mu$
- $\nu_{\mu} \rightarrow \mu \; (HE)$
 - \bullet $\nu_e \rightarrow e$
 - $\nu_e \rightarrow e$ (HE: LPM)
 - \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \mu$
 - $\nu_{\tau} \rightarrow \tau \rightarrow e$
- $\bullet \ \nu_{\tau} \to \tau \to \nu_{\tau}$



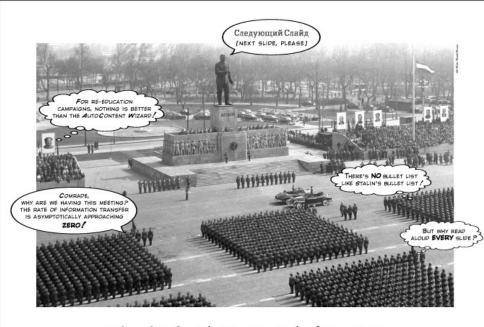
- \bullet $\nu_{\mu} \rightarrow \mu$
- $\nu_{\mu} \rightarrow \mu$ (HE)
 - \bullet $\nu_e \rightarrow e$
 - $\nu_e \rightarrow e$ (HE: LPM)
 - \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \mu$
- $\nu_{\tau} \rightarrow \tau \rightarrow e$



- \bullet $\nu_{\mu} \rightarrow \mu$
- $\nu_{\mu} \rightarrow \mu$ (HE)
 - \bullet $\nu_e \rightarrow e$
 - $\nu_e \rightarrow e$ (HE: LPM)
 - \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \mu$
- $\nu_{\tau} \rightarrow \tau \rightarrow e$
- \bullet $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$

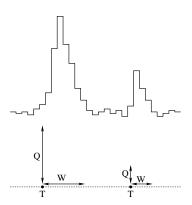

Event Types (3): Exotics

- relativistic magnetic monopoles
- slow magnetic monopoles
- microscopic black holes
- . . .


- relativistic magnetic monopoles
- slow magnetic monopoles
- microscopic black holes

- relativistic magnetic monopoles
- slow magnetic monopoles
- microscopic black holes
 -

Event Types (3): Exotics

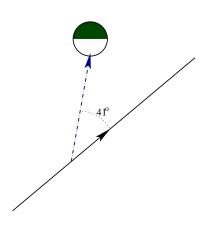

- relativistic magnetic monopoles
- slow magnetic monopoles
- microscopic black holes
- . . .

Edward Tufte, The Cognitive Style of PowerPoint

- SMT: Simple Multiplicity Trigger, or a minimum number of HLC hits within some time
 - SMT8 (all strings)
 - SMT3 (IC79: DeepCore, IC86: extended DeepCore)
 - IceTop (?)
- Cylinder Trigger (a.k.a. "Volume Trigger"): low energy horizontal events (solar WIMP analysis)
- Slow Monopole trigger (can be milliseconds long!)

- Track Engine Prescale
- LowUp
- DeepCore
- EHE
- Vertical Event
- DST
- IceTop
- Muon
- Galactic Center
- Slow Monopole
- Cascade
- Sun and Moon
- MinBias

- Waveforms
 - ATWD (128 × 3.6ns)
 - FADC (256 × 25.0ns)
- "Extracted" pulses

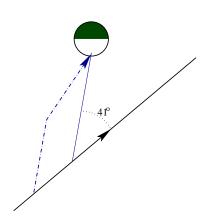

Read the data

- DOM cleaning: remove data from known bad DOMs
- Calibration of waveforms. This involves:
 - Estimate baseline
 - Correct for "droop"
 - Linear transformation from digital "units" to mV.
- Feature Extraction
 - Convert calibrated ATWD/FADC waveforms to pulses
 - Convert SLC charge stamps to pulses
 - Merge all these into one "I3RecoPulseSeriesMap"

Hit cleaning

- Time window cleaning (TWC)
 - Static window w.r.t. a trigger time
 - Dynamic window
- Seeded RT cleaning (SRT)
 - "Seed" can be:
 - Center of Gravity (COG) of HLC pulses
 - all HLC pulses
 - most HLC pulses (excluding obvious outliers)
 - Add to seed pulses that are within a certain distance (R) and time (T) of the pulses we already have
 - Repeat the previous step a few times

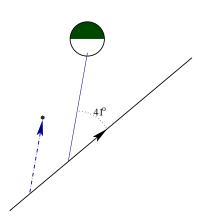
Reconstruction


To be modeled:

- Light Emission
- Scattering, absorption
- Time residual
- Arrival time distribution
- Jitter, noise
- Expected total number of PE

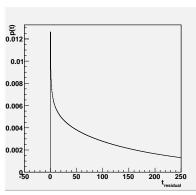
Available solutions:

- Analytic: Pandel
- Table: Photonics


Reconstruction

To be modeled:

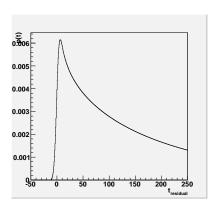
- Light Emission
- Scattering, absorption
- Time residual
- Arrival time distribution
- Jitter, noise
- Expected total number of PE


- Analytic: Pandel
- Table: Photonics

To be modeled:

- Light Emission
- Scattering, absorption
- Time residual
- Arrival time distribution
- Jitter, noise
- Expected total number of PE

- Analytic: Pandel
- Table: Photonics



 $t_{residual} = t_{pulse} - t_{direct}$

To be modeled:

- Light Emission
- Scattering, absorption
- Time residual
- Arrival time distribution
- Jitter, noise
- Expected total number of PE

- Analytic: Pandel
- Table: Photonics

To be modeled:

- Light Emission
- Scattering, absorption
- Time residual
- Arrival time distribution
- Jitter, noise
- Expected total number of PE

Available solutions:

- Analytic: Pandel
- Table: Photonics

Reconstruction

To be modeled:

- Light Emission
- Scattering, absorption
- Time residual
- Arrival time distribution
- Jitter, noise
- Expected total number of PE

Available solutions:

- Analytic: Pandel
- Table: Photonics

Reconstruction

$$p(\xi, \rho, t) = \frac{\rho^{\xi} t^{\xi - 1}}{\Gamma(\xi)} e^{-\rho t}$$

$$\xi = R/\lambda$$

$$\rho = \frac{1}{\tau} + \frac{c}{\lambda a}$$

Event Types

$$\mathcal{F}_{\sigma}(\xi, \rho, t) = \int_{-\infty}^{+\infty} p(\xi, \rho, t') g_{\sigma}(t' - t, \sigma) dt'$$

To be modeled:

- Light Emission
- Scattering, absorption
- Time residual
- Arrival time distribution
- Jitter, noise
- Expected total number of PE

- Analytic: Pandel
- Table: Photonics

(photonics movie)

To be modeled:

- Light Emission
- Scattering, absorption
- Time residual
- Arrival time distribution
- Jitter, noise
- Expected total number of PF

- Analytic: Pandel
- Table: Photonics