

Dark Matter: New Results from Direct Detection

IceCube Inauguration Workshop University of Wisconsin, Madison April 29, 2011

Laura Baudis University of Zurich

Matter and Energy Content of our Universe

Particle Dark Matter Candidates

- Masses and cross sections span many orders of magnitude
- From 10⁻⁶ eV to 10¹⁵ GeV
- From non-interacting to strongly interacting
- We know that the dark matter particle must be some state not contained in the Standard Model

Weakly Interacting Massive Particles

One good idea: WIMPs; in thermal equilibrium in the early Universe

$\chi + \bar{\chi} \leftrightarrow X + X$

- Decouple from the rest of the particles when M << T ("cold")
- Their relic density can account for the dark matter if the annihilation cross section is weak (~ pb)

$$\Omega_{\chi} h^2 \simeq 3 \times 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1} \frac{1}{\langle \sigma_A v \rangle}$$

 Such particles are predicted to exist in most Beyond-Standard-Model theories (neutralino, lightest Kaluza-Klein particle, etc)

The WIMP Hypothesis is Testable $\Delta T \propto E/C_{Thermometer}$

We hope to learn a lot from direct detectors, from indirect detectors and from accelerators!

Direct Detection of WIMPs: Principle

WIMP

WIMP

ER

- By their elastic collision with nuclei in ultralow background detectors
- The energy of the recoiling nucleus is a few tens of keV:

$$E_R = \frac{q^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1 - \cos\theta)$$

- q = momentum transfer
- μ = reduced mass (m_N = nucleus mass; m_X = WIMP mass) m_{x}, m_{N}

$$=\frac{m_{\chi}m_N}{m_{\chi}+m_N}$$

• v = mean WIMP-velocity relative to the target

 μ

• θ = scattering angle in the center of mass system

Expected Rates in a Terrestrial Detector

 $M_{\chi} = WIMP-mass$

 σ_{xN} =cross section for WIMP-nucleus elastic scattering

Local Density of WIMPs in the Milky Way

 $\rho_{halo} = 0.1 - 0.7 \text{GeV cm}^{-3}$

 $\rho_{disk} = 2 - 7 \text{GeV} \text{cm}^{-3}$

For a density of 0.3 GeV cm⁻³, we have ~ 3000 WIMPs m⁻³ ($M_W = 100$ GeV)

WIMP flux on Earth: ~ 10⁵ cm⁻²s⁻¹ (100 GeV WIMP)

Even though WIMPs are weakly interacting, this flux is large enough so that a potentially measurable fraction will elastically scatter off nuclei

Tuesday, May 3, 2011 (week)

WIMP Mass and Spin-Independent Cross Section

 Examples for recent predictions from supersymmetry: cross sections down to a few ×10⁻⁴⁷ cm²

''

Expected Interaction Rates

Calculate the differential recoil rate by integrating over the WIMP velocity distribution

(Standard halo model with $\rho = 0.3$ GeV/cm³)

Tuesday, May 3, 2011 (week)

The Challenge

To observe a signal which is:

- very small (few keV)
- extremely rare (1 per ton per year?)
- embedded in a background that is millions of times higher

- Why is it challenging?
- Detection of low-energy particles done!
 e.g. micro-calorimetry with phonon readout
- Rare event searches with ultra-low backgrounds done!
 e.g SuperK, Borexino, SNO, etc
- But can we do both?

Direct Detection Techniques

Phonons

Al₂O₃: CRESST-I

Ge, Si: CDMS Ge: EDELWEISS

CaWO₄, Al₂O₃: CRESST

C, F, I, Br: PICASSO, COUPP Ge: Texono, CoGeNT CS₂,CF₄, ³He: DRIFT DMTPC, MIMAC Ar+C₂H₆: Newage

Charge

LXe: XENON LXe: LUX LXe: ZEPLIN LAr: WARP LAr: ArDM Nal: DAMA/LIBRA Nal: ANAIS Csl: KIMS

LXe: XMASS LAr, LNe: DEAP/CLEAN

Light

WIMP

Tuesday, May 3, 2011 (week)

WIMP

Cryogenic Experiments at mK Temperatures

Detect a temperature increase after a particle interacts in an absorber

 Temperature sensors: superconductor thermistors or superconducting transition sensors

Cryogenic Experiments at mK Temperatures

- Advantages: high sensitivity to nuclear recoils (measure the full energy in the phonon channel); good energy resolution, low energy threshold (keV to sub-keV)
- Ratio of light/phonon or charge/phonon: nuclear versus electronic recoils discrimination

Background region

Expected signal region

The Cryogenic Dark Matter Search (CDMS)

- At the Soudan Laboratory in Northern Minnesota, 2090 mwe
- Neutron background due to muons: ~ 1 kg⁻¹ year⁻¹

Depth [meters water equivalent]

CDSM: Signal versus Backgrounds

 Ratio of charge-to-phonon signal and time difference between charge and phonon signals to distinguish WIMPs from backgrounds

Neutrons/WIMPs

Surface events

Neutrons/WIMPs

CDMS-II at the Soudan Mine

 5 towers, each with 6 Ge/Si detectors operated at 40 mK at Soudan, in appropriate low-background shield until 2009

Entrance to the mine

CDMS cryostat

Tuesday, May 3, 2011 (week)

Final CDMS WIMP Search Runs: 191 kg d

 WIMP search data analysis: Two events passing all cuts (which were set "blind", based on calibration and background data outside the WIMP search region)

Limits on WIMP-nucleon Cross Sections

Science, 1186112 (2010)

Background estimate:

 0.8 ± 0.1 (stat) ± 0.2 (syst) events

Probability to observe two or more events is 23%

At a WIMP mass of 70 GeV, the cross section limit is 3.8 x 10⁻⁴⁴ cm² (90% C.L.)

Future Cryogenic Dark Matter Projects

- US/Canada: SuperCDMS (15 kg to 1.5 tons Ge experiment)
- Larger Ge detectors (650g) with improved readout
- To be located at SnoLAB

- Europe: EURECA (100 kg to 1.0 ton cryogenic experiment)
- Multi-target approach
- To be located at the ULISSE Lab (Modane extension) in France

Noble Liquids Time Projection Chambers

- Large, scalable, homogeneous and self-shielding detectors
- Prompt (S1) light signal after interaction in the active volume
- Charge is drifted, extracted into the gas phase and detected as proportional light (S2)

- S2/S1 depends on dE/dx
 good 3D position resolution
- => particle identification

Ar (A = 40); λ = 128 nm Xe (A=131); λ = 178 nm

The XENON Program

XENON10

XENON1T

399999999999

1 ton fiducial

2.4 t tota

@180K

2011-2015

Proposal submitted to

LNGS in April 2010

XENON R&D

2005-2007 PRL100 PRL101 PRD 80 NIM A 601

XENON100

2008-2011 taking science data first results: PRL105 TDR submitted to LNGS mid October, 2010

XENON: Columbia, Zürich, Coimbra, Mainz, LNGS, WIS, Münster, MPIK, Subatech, UCLA, Bologna, Torino, Nikhef

Tuesday, May 3, 2011 (week)

The XENON100 Experiment

- At the Gran Sasso Laboratory in Italy, ~ 3600 mwe
- Operated in conventional passive shields (Cu, Poly, Pb, H₂0)

The XENON100 Detector

- 161 kg of ultra-pure liquid xenon (LXe), 62 kg in the active target volume
- 30 cm drift gap TPC with two PMT arrays (242 PMTs) to detect the prompt and proportional scintillation signals

Example of a 9 keV Nuclear Recoil Event

 4 photoelectrons detected from about 100 S1 photons 645 photoelectrons detected from 32 ionization electrons which generated about 3000 S2 photons

Example of a 9 keV Nuclear Recoil Event

XENON100 Backgrounds: Data and Predictions

- Data versus Monte Carlo simulations (no MC tuning, input from screening values for U/Th/K/Co/Cs etc of all detector components); no active liquid xenon veto cut
- Background is 100 times lower than in XENON10 and meets design specifications

XENON100 collaboration, arXiv:1101.3866, PRD 83, 082001 (2011)

XENON100 Backgrounds: Data and Predictions

- Data versus Monte Carlo simulations (no MC tuning, input from screening values for U/Th/K/Co/Cs etc of all detector components); no active liquid xenon veto cut
- Background is 100 times lower than in XENON10 (and any other dark matter experiment) and meets design specifications

Tuesday, May 3, 2011 (week)

Background Rejection in XENON100

- LXe self-shielding from penetrating radiation
- Additional identification/rejection of gammas and neutrons by:
 - charge/light (S2/S1): > 99.5%
 rejection
 - 3D event localization with mm precision: a) fiducial volume b) single scatters

XENON100 2010 Dark Matter Run

XENON100: New Results

Exposure: ~ 1471 kg days; data taken during January - June 2010

Fiducial mass region: 48 kg of liquid xenon 900 events in total

Signal region:

3 events are observed

- 1.8 ± 0.6 gamma leakage events expected
- $0.1 \pm 0.08 \pm 0.04$ neutron events expected

XENON100: New Results

- Blue bands: 1- and 2-sigma expectations, based on zero signal
- Limit (dark blue) is 1.5-2 sigma worse than expectations, given 2 events observed at high S1
- At a WIMP mass of 50 GeV, the limit on the SI WIMP-nucleon cross section is 7 x 10⁻⁴⁵ cm² (90% C.L.)
- Limit is robust against extrapolation of L_{eff} below 3 keVr

10-3 DAMA/Na -40 10 WIMP-Nucleon Cross Section [cm²] CoGeNT DAMA/I 10-41 CDMS 10-42 EDELWEISS 10-43 XENON100 (2010) 10-44 XENON100 (2011) Buchmueller et al.

100

WIMP Mass [GeV/c2]

 10^{-4}

10

XENON100: Status

- New AmBe calibration
- Taking ⁶⁰Co and ²³²Th calibration data
- Dark matter run since March
- Background back to level in 2009

XENON100: expected sensitivity

IceCube: competitive limits for SD WIMP-nucleon interactions

Next Phase: XENON1T

Designed to probe the σ -region down to 5x10⁻⁴⁷ cm²

TDR submitted to LNGS in October, 2010

Construction to start in late 2011 Full physics reach by 2015

Beyond Current Detectors: DARWIN

 To reconstruct WIMP properties such a mass and scattering cross section we will (likely) need larger detectors for high-stats recoil spectra

astro-ph.CO: 1012.3458, accepted in PRD (2011)

Miguel Pato, Laura Baudis, Gianfranco Bertone, Roberto Ruiz de Austri, Louis E. Strigari and Roberto Trotta

DARWIN: DARk matter WImp search with Noble liquids

- R&D and design study for next-generation noble liquid detector in Europe
- Location: Gran Sasso (Italy) or ULISSE (Modane Lab extension, France)
- Physics goal: prove WIMP-nucleon cross sections beyond 10⁻⁴⁷ cm²

2009 - 2012: R&D and Design Study
2013: Submission of Lol, engineering studies
2014 - 2015: Construction and commissioning
2016 - 2020: Operation, physics data

(darwin.physik.uzh.ch)

arXiv:1012.4764v1

Summary and Prospects

Direct detection

discover relic particle constrain $(m, \rho \times \sigma)$

with input from LHC/ILC determine **P**local

Indirect detection discover relic particle constrain $(m, \sigma \times \rho^2)$

with input from LHC/ILC determine **PGC/halo**

LHC/ILC

discover new particles determine physics model and MWIMP predict direct/indirect cross sections

Tuesday, May 3, 2011 (week)

End