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ANITA as a neutrino radio telescope
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<% Pulse-phase interferometer (<30-60 ps timing) gives
intrinsic resolution of <0.3° elevation by ~1° azimuth
for arrival direction of radio pulse

[\ effective field-f-view
r given event direc

SA < Neutrino direction constrained to ~<2° in
— - elevation by earth absorption, and by ~5-7° in
Ypovemgerm N — azimuth by observed polarization angle of

— detected impulse
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Pulse phase interferometry
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4 RF Waveform samplers (G. Varner, UHM)
» Provide 10 bits, 2.6 Gsamples/sec for 80 channels
< Waveform cross-correlation delay precision determines
angular resolution
m  —~30-40 ps (—1 cm) vertical at SNR~5c
m ~60-80 ps (2-3cm) horizontal (due to DAQ clock jitter)

waveform cross-correlation
gives baseline delays
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End result: map of instantaneous radio intensity, __— 250

Method pioneered by UH student Romero-Wolf!

Nadir angle
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June 2006, SLAC T486: “Little Antarctica”

' End Station A, SLAC < SLAC e showers with

' composite energy same
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as UHE neutrinos
m 1089 x 28 GeV
=2.8 x 1019 eV
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Pre-launch rollout

volcano

photovoltaics

; < Launch from ~80m deep Ross ice
Sena shelf (floats on Ross sea)

Cmd/control+DAQ

antenna? < ~8 miles from McMurdo station

e '- photovoltaics
o ) < Affords flat, stable 1-mile diameter
5 launch pad

Photos: J. Kowalski
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ANITA-1 flight path

= 15t orbit
m— 2nd orbit
e 3rd Orbit
e qth partial orbit

—r Average .-~
cember lalinche

Ave rage
“Flight pathy--

alladino,

< 35 days, 3.5 orbits, but anomalous Polar Vortex conditions

< Stayed much further “west” than average

< In view of radio noise from stations (S. Pole & MCM) ~50% of time

< But still achieved 18 days of good livetime at ~1.2km average depth of ice
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Flight sensitivity snapshot

SP

<T...>~ 180K

payload time, days from lounch
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< ANITA sensitivity floor
defined by thermal (kT)
noise from ice+sky-+rcvr
m T —140K
m Tice — 230K
m Tgy — 20-80K
< Thermal noise floor seen
Intermittently throughout
of flight—but punctuated
by station noise

s South Pole and McMurdo
stations!

< Still a significant fraction
(—50-60%) of time with
pristine conditions



Solar Sensitivity calibration

Elevation-azimuth coordinates < ANITA (—3-5m cluster)
interferometric images of
the radio sun

<4 Flight averages shown
here

Elevation from horizontal (degrees)

i Sun detection required
I B about 200 sec of thermal
noise data

Provides 1st-order
absolute calibration of
antenna noise, beam
response, event timing

i Note also horizon (and its
sidelobes) at -6 degrees!

Images from S. Hoover, UCLA
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Solar reflection
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<% Higher SNR imaging of the reflected sun in Hpol near Brewster angle

m Reveals ice surface reflection & Fresnel diffraction pattern of horizon
(resolved out by inteferometer)

m Reflection coefficient confirms relatively smooth ice surface
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ANITA geo-location of borehole cal events

ANITA Flight Path

| Expect ~ cAt/2D altitude & azimuth
Ground Pulser Events Recon. Period

Reconstructed RF Source Position AT -~ 40-60 pS, D e 1m (hOFIZOﬂtal) to 3
Payload track during m (vertical)

this segment /\ Altitude: 0.21° observed, 0.3° expected

Azimuth: 0.8° observed, 1.7° expected
Multiple baselines improve constraints
Pulse-phase interferometry works well!

Constant 180.621
Mean -0.050
- - Sigma 0.210
ROSS ICE SHELF

Ross Island

Reconstructed event
locations

0———39.8km ROSS SEA Constant 46.766

Mean 0.124

To payload : ' Sigma  0.796

pulser up to 300 km

350 40 @0 20 A0 D 40 20 30 40 B
dp (deg)

Thanks to JiWoo Nam, NTU

Ross ice shelf

X
AN +——Broadband antenna
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Event reconstruction & analysis

P. Gorham, Madison 2010

Raw data: RF plane-
wave lights up one side
of payload

Waveform corrletor
(offline) gives 30-60ps
timing

Reconstruct ground
position & error ellipse

If <3c from camp or
any other event, reject

South pole EMI,
calibrated borehole
pulser at MCM used to
calibrate timing &
statistical behavior
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Initial unblinded higher-threshold event set

Event reconstructed

without CW Filtering
' “Event reconstructed
~wikh CW Filtering

Jiwoo Nam, NTU

“camp” = any man-made installation, active or not
e most are inactive, many may be gone in fact
» but exposed metals could discharge

P. Gorham, Madison 2010

&

~19K events (9.6K Vpol &
10K Hpol) are impulsive &
reconstruct to Antarctic ice
locations

Exclude all repeating
locations (H,V,H+V)

Exclude single events within
~50km from known sites

After cluster+camp
rejection:

m 0 V-polarized (no askaryan-
like signals=>» no neutrinos)

m 6 H-polarized events left
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ANITA-1 lower threshold analysis
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< Independent deeper analysis done at UCLA
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< Detected: no neutrino candidates, all of original 6 Hpol events, +10 more
< Hpol events: good coherence, not like any anthropogenic signals, low-

frequency-dominated
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2 of 16 Hpol events were unusual...

V10N 49A00H 'S wou) sabew|
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< Both of these impulses were seen from directions above the horizon,
but below the horizontal

< Green: average of 14 events with same-sign

< Black: above-horizon events: phase is 180 degree inverted!

m Reflections cause phase inversion - are these the direct signals of the same process
as the 14 others?
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Radio pulse waveform & spectrum

reflected

o direct
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Normalized waveforms — all very similar (180 deg phase-flipped for 14 reflected waveforms
— here knowledge of phase — via careful group-delay calibration -- was critical!)

Spectrum (first ever broadband in this range) best fits exponential, power law not ruled
out. Amplitude calibration critical here (not perfect, 200-300 MHz band still suspect)
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Correlation to local B field

- All of UHECR candidates

AW ———2=6-T1 showed radio polarization
x? = 17.4 (14 DOF) perpendicular to local B-
field direction (mostly
vertical)

< Very difficult to do
without some relation to
Lorentz force F= qv x B!
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<% Background signals:
random correlations

80 100 120
always!

projected geomagnetic field angle, @, °

Stephen Hoover UCLA
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Energy scale, directions

<E> = 1.5*"2x 10%eV

-0.4

1019 1020
energy, eV

Red: events, blue:
Monte Carlo, black:
above horizon

< If we try to use REAS2/3 results (Tim Huege et al)
= Energy scale is very high, <E> ~ 4e19 eV
= But model parameters don't fit the data well

< Alternative approach: data-driven Bayesian max likelihood fitter
= Allow radio intensity & angular parameters to float within model priors
= Results: energy scale is lowered, but with large asymmetric errors
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ANITA as a UHECR telescope?

ANITA

reflected

< If hypothesis of UHECR radio signals is correct, direct events
have much less acceptance than reflected
» Reflected events can come from a wide range of angles
m Direct events have only a narrow stripe near the horizon

< UHECR energy spectrum well-measured, so test this
with a simulation
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ANITA-2 launch Dec. 2008
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< ANITA-1I: 31 days at float, >70% in radio- o _ e
quiet conditions Predicted sensitivity

4 Collected 3x as much data as ANITA-1 Increase verified by In-

. flight calibration (pulsers
< Angular resolution ~50% better J : (P
o . + COSMIC Srcs)
m Less ice “lost” to camp peripheries
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ANITA-II analysis

Images from Abby Vieregg, UCLA

<4 Left: map of background RF intensity for ANITA-11, with “quiet” ice (pure thermal) in
violet, ‘hotspots’ in light blue, camps,traverses, flight paths ==black dots
= Everything not consistent with thermal gets effectively excluded from search region
= (Methodology of map on left another A. Romero-Wolf invention!)

<4 Right: final sample after unblinding: 2 Hpol, 3 Vpol (but where are the UHECRs??)
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Survivors
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% 1 of 3 Vpol survivors had sub-threshold partners
= Anything that repeats cannot be a neutrino!

< Two remaining events: highly Vpol (>80%), flat spectrum, not
near any camps, consistent neutrino simulations
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Consistent with neutrinos?

black: neutrinos Green: neutrinos
Red: events Red: events

helevation |
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< These distributions were not used to make any cuts on blind event sample

< More distributions to come, but so far events appear to have similar
distributions as simulated neutrinos

< for rightmost plot, green should not have been cut off, but events still
seem relatively close to other events (but passed the clustering cut)
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Shower to waveform mapping

- Time domain
100 PeV i:xl[l'g] """" WavefOrm Off the
Cherenkov angle:
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= Vector potential A
- P maps shower
A current to far-field

0 -
-0.30 0 300 1000 1300 2000 2500

YT e | Depth g ) = Electric field:

Time (ns)

cess charge Q

0.010

L b determined from
— time derivative of A

RxE (V)
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Alvarez-Muniz, Romero-wolf, Zas, arXiv 1002.3873 2010
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Shower to waveforms (2)

E(t)= dA/dt

Electric Field in the Time Domain
50ps sampling
rbit

3E18 eV Electron Shower ——  Shower Profile

Longitudinal Charge Excess Profile — Rescaled Vector Po
—— Rescaled Vector Po arbitrary amplitude scalings

and delays for display
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< A. Romero-Wolf (UH), working with Alvarez-Muniz & Zas
= New formalism for inverting waveforms to determine shower properties
»  Waveform shape at the sub-ns level encodes the intrinsic shower profile

= LPM showers can produce very “ratty” pulse shapes — but these are the highest
percentage of showers that trigger near threshold

= Underlines potential importance of good waveform sampling
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ANITA-II results summary

TABLE II: Expected numbers of events N, from several UHE Cos-
mogenic neutrino models. and confidence level for exclusion by
ANITA-II observations.

: ; ; — Model & references predicted N,
TABLEI: Event totals vs. analysis cuts and estimated signal efficien-
cies for the ANITA-IT data set

Baseline models

Cut requirement Vpol Hpol Efficiency (ESS)

: o - 21
(0) Hardware-Trigger ~ 26.7TM ~ 26.7TM o T
s =l Strong source evolution models

(1) Q'Llfilit}" Event ~21.2M ~ Engel, Seckel. Stanev 2001 [11]
Reconstructed Event 271.824 48, 0.93 Aramo ef al.
Event-isolated 15

Not Payload Noise 12 Yiksel & Kistler 2(

hat saturate all bounds:

Not Misreconstruction 9or10 ]

Hot Spot-isolated 4or5 : 0.957 Aramo er al. 2
amp isolated A e ) . n Waxman-Bahcall fluxes:
_ J=LAUIC = - ! J A A
. Waxman, Baheall 1 evolved sources [12]
Total Efficiency

< Results summary: expected 1 bkg event, saw 3 events
= 1 of 3 is demonstrable anthropogenic, other 2 are ??

4 GZK models predict 0.3 up to 25 events ( 1-2 events for some mainstream
models
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ANITA-I1 limits
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< Minimal fluxes are a
real problem!
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Summary Y,

< Major lessons learned from ANITA:

Don’t deploy until EVERYTHING is ready (even if it means a scrub)

ANITA-2 almost had to delay a year while we sorted it out — we
were prepared to scrub if we had to

Calibrate everything twice, and then one more time for good
measure, before deploying it.

Then Calibrate again during operation with some other independent
technique. You will never know what science you may have killed with
a poor calibration

Don’t underestimate the power of radio interferometry!
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