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Ray [racing
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Basic Method

® Really simple stepwise process

® Takes a while for longer paths
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Finding Reflected Solutions
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Using Tables for Speed

® TJable must have three indices:

® Receiver Depth
® Transmitter Depth

® Horizontal Distance between Transmitter and Receiver

® Don’t want to to have to tabulate very
finely, so interpolate between table entries

® Trouble when adjacent entries have
different numbers or types of solutions

® Even so,and without loading tables into
RAM, still works out around 25 times faster



Vertex Reconstruction
ldeas

® Kael’s linear least squares

® Full-blown minimization (for full effect, use
with ray tracing)

® Grid testing

® /enith-Ring-Cone...Thing



Linear Least-Squares

® Based on a pair of

simplifying
assumptions:

® Rays are straight

® Velocity is constant

® | have never been ©

able to make this
work well
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Full Minimization

® Ask a general minimizer to minimize the
sum of squared time residuals for all hits

® Can be very accurate, can be be very slow,
can get stuck in strange places

® Doesn’t always play well with tabulated ray-

traces; may decide to investigate points that
fall far outside of tables
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Grid Testing

® A brute-force way to get into the ballpark
of the correct position

® For each point in some grid, for each
recorded hit, find the time at which the
vertex would have had to occur

® The best vertex guesses are the ones with
the smallest spread in required times

® Seems capable of giving pretty good time
estimates, as long as a moderately good
position is found



Zenith-Ring-Cone
Intersection

For any pair of hits on the same string, can
compute an incident zenith angle

For any pair of zenith angles, can follow ray-
traces back and find intersection point

This defines a ring (since azimuth unknown)

Rays are nearly parallel, so exact position of
each ring is rather uncertain, but the
collection of rings for a given string seem
to come quite close to forming a nice cone



Zenith-Ring-Cone
Intersection continued

® Given the set of cones for all strings with
hits, can look for point nearest to all cones

® Depends on having plenty of hits, on
separate strings

® Appears to degrade rapidly as time jitter
Increases

® Seems to give pretty good depth estimates,
complements the grid search






