Some ldeas in Data
Analysis

Chris Weaver
ARA Meeting March 17,2010

Ray [racing

AO,., |
W
M %@.@.

N
RN

400

EUSN N e\ N

O
N
AL (X

B9

s,

/.,Z?z.é b
Nt
Nt
Niikikioesites
.@%&M& “%uv X

Nl 3
///MW///W///,,___;&MW\W\\M\M\W\WH?O ~ .

800

700

500

300

200

100

Basic Method

® Really simple stepwise process

® Takes a while for longer paths

L o

Al = sin(f) —As

n(z) dz

Finding Reflected Solutions

o

7 0

Vertical Miss Distance

1000

500 |

-500

-1000

-1500

-2000

'del.txt'u 1:2

1.5 2

Launch Angle (Radians)

25

3.5

4000

\®]
S
o
-

-2000

Vertical Miss Distance

-4000

T
'del.txt'

'del2.txt'

'del3.txt'

1:2
1:2
1:2

1 1.5 2

Launch Angle (Radians)

35

Using Tables for Speed

® TJable must have three indices:

® Receiver Depth
® Transmitter Depth

® Horizontal Distance between Transmitter and Receiver

® Don’t want to to have to tabulate very
finely, so interpolate between table entries

® Trouble when adjacent entries have
different numbers or types of solutions

® Even so,and without loading tables into
RAM, still works out around 25 times faster

Vertex Reconstruction
ldeas

® Kael’s linear least squares

® Full-blown minimization (for full effect, use
with ray tracing)

® Grid testing

® /enith-Ring-Cone...Thing

Linear Least-Squares

® Based on a pair of

simplifying
assumptions:

® Rays are straight

® Velocity is constant

® | have never been ©

able to make this
work well

ors (m)

=
=
Q
=
=
. —
3

Kael's Min

AN |
/ =
]]]]
1000 1500 2000 2500
D

Full Minimization

® Ask a general minimizer to minimize the
sum of squared time residuals for all hits

® Can be very accurate, can be be very slow,
can get stuck in strange places

® Doesn’t always play well with tabulated ray-

traces; may decide to investigate points that
fall far outside of tables

I I I I + I
+
(@\|
=
=
- ¥
: w
e
£ ﬁ.
<
5 B
2 Fy
Ty
K3
+
+ +
4+
+ H
+
.m%
&)
T
= n*n |
++++
++++
t
i
F
| | | | | | |
(@\| cn <t w \O ~ o0 (@)
- - - - - - - n

-11

(s|jenpisal awi 7)bo

1.5

1

0.5

-0.5

True Point

Chosen Point

Grid Testing

® A brute-force way to get into the ballpark
of the correct position

® For each point in some grid, for each
recorded hit, find the time at which the
vertex would have had to occur

® The best vertex guesses are the ones with
the smallest spread in required times

® Seems capable of giving pretty good time
estimates, as long as a moderately good
position is found

Zenith-Ring-Cone
Intersection

For any pair of hits on the same string, can
compute an incident zenith angle

For any pair of zenith angles, can follow ray-
traces back and find intersection point

This defines a ring (since azimuth unknown)

Rays are nearly parallel, so exact position of
each ring is rather uncertain, but the
collection of rings for a given string seem
to come quite close to forming a nice cone

Zenith-Ring-Cone
Intersection continued

® Given the set of cones for all strings with
hits, can look for point nearest to all cones

® Depends on having plenty of hits, on
separate strings

® Appears to degrade rapidly as time jitter
Increases

® Seems to give pretty good depth estimates,
complements the grid search

