DJ Boersm

Event Type

Reconstructio

Likelihood

Quality

References

Track Reconstruction in IceCube

David J. Boersma

The IceCube Project

MANTS 2009, September 26

Reconstructi

Likelihood

Quality

Reference

- 1 Event Types
- 2 Light Propagation
- 3 Reconstruction
- 4 Likelihood functions
- 6 Quality Parameters
- 6 References

• CR
$$\rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\tau} \rightarrow \tau \rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (corner)

• CR
$$\rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

Liabt

_ . . .

Likelihoo

Quality

References

•
$$CR \rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\tau} \rightarrow \tau \rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (corner)

• CR
$$\rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

Liaht

B

Likelihoo

Quality

References

•
$$CR \rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\tau} \rightarrow \tau \rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (corner)

• CR
$$\rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

Liaht

. . .

Likelihoo

Quality

References

• CR
$$\rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\tau} \rightarrow \tau \rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (corner)

• CR
$$\rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

• CR
$$\rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\tau} \rightarrow \tau \rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (corner)

• CR
$$\rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

Libratibasa

Quality

References

• CR
$$\rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\tau} \rightarrow \tau \rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (corner)

• CR
$$\rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

Likelihood

Quality

References

• CR
$$\rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\tau} \rightarrow \tau \rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (corner)

• CR
$$\rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu \; (\sim LE)$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

Liaht

Likelihoo

Quality

Reference:

Event Types (2): multiple muons

- $CR \rightarrow \mu$ bundle
- CR $\rightarrow \mu$ (HE, high ρ_T)
- 2CR \rightarrow 2 μ (coinc)
- μ pairs from decay of microscopic black holes

Liaht

Reconstructi

Likelihoo

Quality

References

Event Types (2): multiple muons

- $CR \rightarrow \mu$ bundle
- CR $\rightarrow \mu$ (HE, high ρ_T)
- 2CR \rightarrow 2 μ (coinc)
- μ pairs from decay of microscopic black holes

Liaht

loconstructi

Likelihoo

Quality

References

Event Types (2): multiple muons

- $CR \rightarrow \mu$ bundle
- CR $\rightarrow \mu$ (HE, high p_T)
- $2CR \rightarrow 2\mu$ (coinc)
- μ pairs from decay of microscopic
 black holes

Liaht

B

Likelihoo

Quality

Reference:

- CR $\rightarrow \mu$ bundle
- CR $\rightarrow \mu$ (HE, high ρ_T)
- $2CR \rightarrow 2\mu$ (coinc)
- μ pairs from decay of microscopic black holes

Liah

Likelihoo

Quality

References

•
$$CR \rightarrow \mu$$

• CR
$$\rightarrow \mu$$
 (LE)

•
$$CR \rightarrow \mu (HE)$$

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu$$
 (HE)

•
$$CR \rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (LE)

• CR
$$\rightarrow \mu$$
 (HE)

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu$$
 (HE)

•
$$CR \rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (LE)

• CR
$$\rightarrow \mu$$
 (HE)

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu$$
 (HE)

Likelihoo

Quality

References

• CR
$$\rightarrow \mu$$

•
$$CR \rightarrow \mu$$
 (LE)

•
$$CR \rightarrow \mu$$
 (HE)

•
$$\nu_{\mu} \rightarrow \mu$$

•
$$\nu_{\mu} \rightarrow \mu$$
 (LE)

•
$$\nu_{\mu} \rightarrow \mu$$
 (HE)

ь . ..

Likolihoo

Quality

References

Liabi

Reconstruction

Likelihoo

Quality

Reference

Event Types (4): many more!

. . .

Liaht

Likelihoo

Quality

Reference

Phenomena:

- Direct light
- Scattering
- Absorption
- Time residual
- Arrival time distribution
- · Jitter, noise

- Analytic: Pandel
- Table: Photonics
- Fits: Photospline

Likelihoo

Quality

Reference

Phenomena:

- Direct light
- Scattering
- Absorption
- Time residual
- Arrival time distribution
- Jitter, noise

- Analytic: Pandel
- Table: Photonics
- Fits: Photospline

Liaht

Dagagaturati

Likelihoo

Quality

Reference

Phenomena:

- Direct light
- Scattering
- Absorption
- Time residual
- Arrival time distribution
- Jitter, noise

- Analytic: Pandel
- Table: Photonics
- Fits: Photospline

Poconetruction

Likelihoo

Quality

Reference

 $t_{residual} = t_{pulse} - t_{direct}$

Light & Photoelectrons

Phenomena:

- Direct light
- Scattering
- Absorption
- Time residual
- Arrival time distribution
- Jitter, noise

- Analytic: Pandel
- Table: Photonics
- Fits: Photospline

Liaht

l ikelihood

Quality

References

Light & Photoelectrons

Phenomena:

- Direct light
- Scattering
- Absorption
- Time residual
- Arrival time distribution
- · Jitter, noise

- Analytic: Pandel
 - Table: Photonics
 - Fits: Photospline

Reconstruction

Likelihood

Quality

References

Light & Photoelectrons

Phenomena:

- Direct light
- Scattering
- Absorption
- Time residual
- Arrival time distribution
- Jitter, noise

- Analytic: Pandel
- Table: Photonics
- Fits: Photospline

Reference

Light & Photoelectrons

$p(\xi, \rho, t) = \frac{\rho^{\xi} t^{\xi - 1}}{\Gamma(\xi)} e^{-\rho t}$

$$\xi = R/\lambda$$
$$\rho = \frac{1}{\tau} + \frac{c}{\lambda a}$$

$$\mathcal{F}_{\sigma}(\xi, \rho, t) = \int_{-\infty}^{+\infty} p(\xi, \rho, t') g_{\sigma}(t' - t, \sigma) dt'$$

Phenomena:

- Direct light
- Scattering
- Absorption
- Time residual
- Arrival time distribution
- Jitter, noise

- Analytic: Pandel
- Table: Photonics
- Fits: Photospline

Reconstructi

Likelihoo

Quality

Reference

(photonics movie)

Light & Photoelectrons

Phenomena:

- Direct light
- Scattering
- Absorption
- Time residual
- Arrival time distribution
- · Jitter, noise

- Analytic: Pandel
- Table: Photonics
- Fits: Photospline

O.I Boersma

Event Type

Liaht

Reconstruction

Likelihoo

Quality

Reference

Light & Photoelectrons

Phenomena

- Direct light
- Scattering
- Absorption
- Time residual
- Arrival time distribution
- · Jitter, noise

- Analytic: Pandel
- Table: Photonics
- Fits: Photospline

Reconstruction

Likelihoo

Quality

Reference

- Determine event type(s)
- Fit variables, parametrization
- 3 Likelihood *L* (light emission, propagation)
- 4 Seeding algorithm
- 6 Maximize L

- event topology
- which variables are needed to specify the physics
- I3EventHypothesis

Reconstruction

Quality

Reference

- Determine event type(s)
- Pit variables, parametrization
- 3 Likelihood L (light emission, propagation)
- 4 Seeding algorithm
- 6 Maximize L

- Which physics variables do we want to fit?
- Choose good parametrization (avoid singularities, cyclic variables)
- Stepsizes, bounds, etc.
- I3ParametrizationBase

Reference

- Determine event type(s)
- 2 Fit variables, parametrization
- 3 Likelihood *L* (light emission, propagation)
- 4 Seeding algorithm
- Maximize L

- light emission (NPE, PDF?)
- data representation (waveforms, pulses?)
- Bayesian terms?
- I3EventLogLikelihoodBase

Likelihoo

Quality

Reference

- Determine event type(s)
- 2 Fit variables, parametrization
- 3 Likelihood L (light emission, propagation)
- 4 Seeding algorithm
- 6 Maximize L

- · first guess
- numerical considerations (e.g. make sure that time residuals are mostly positive)
- I3SeedServiceBase

Quality

Reference

- Determine event type(s)
- 2 Fit variables, parametrization
- 3 Likelihood *L* (light emission, propagation)
- 4 Seeding algorithm
- 6 Maximize L

- minimize -log(L)
- Generic minimizer algorithm
- Typically simplex (brute force, particle swarm, simulated annealing, etc.)
- I3MinimizerBase

Reconstruction

Likelihood

Quality

References

Likelihood (only charge)

$$\begin{aligned} \log(L) &= \sum_{d \in \{all\ DOMs\}} \log(L_d) \\ \log(L_d) &= \log\left(\frac{\mu_d^{N_d} e^{-\mu_d}}{N_d!}\right) \\ &= N_d \log(\mu_d) - \mu_d - \log(N_d!) \\ &= L_{d.brightness} + L_{d.combinatorial} \end{aligned}$$

Here, for every DOM d:

 $\mu_{\it d} = {
m expected number of photoelectrons}$

 N_d = detected number of photoelectrons

Reconstruction

Likelihood

Quality

References

Likelihood (only charge)

$$\begin{aligned} \log(L) &= \sum_{d \in \{all\ DOMs\}} \log(L_d) \\ \log(L_d) &= \log\left(\frac{\mu_d^{N_d} e^{-\mu_d}}{N_d!}\right) \\ &= N_d \log(\mu_d) - \mu_d - \log(N_d!) \\ &= L_{d.brightness} + L_{d.combinatorial} \end{aligned}$$

Here, for every DOM d:

 $\mu_{\rm d} = {
m expected number of photoelectrons}$

 N_d = detected number of photoelectrons

oonotruotio

Likelihood

Quality

Reference

Time information

- Waveforms
 - ATWD (128 × 3.6ns)
 - FADC (256 × 25.0ns)
- "Extracted" pulses

Quality

References

Likelihood (charge and time)

$$\begin{split} \log(L_d) &= \sum_{i} \log \left(\frac{\mu_{di}^{N_{di}} e^{-\mu_{di}}}{N_{di}!} \right) \\ &= \sum_{i} N_{di} \log(\mu_{di}/\mu_{d}) \\ &+ N_{d} \log(\mu_{d}) - \mu_{d} \\ &- \sum_{i} \log(N_{di}!) \\ &= L_{d,timing} + L_{d,brightness} + L_{d,combinatorial} \end{split}$$

Here, for every DOM *d*:

 $\mu_{ extit{d}i}$ = expected number of photoelectrons in time bin i

 N_{di} = detected number of photoelectrons in time bin i

 μ_d = expected total number of photoelectrons

 N_d = detected total number of photoelectrons

Quality

References

Likelihood (charge and time)

$$\begin{split} \log(L_d) &= \sum_{i} \log \left(\frac{\mu_{di}^{N_{di}} e^{-\mu_{di}}}{N_{di}!} \right) \\ &= \sum_{i} N_{di} \log(\mu_{di}/\mu_{d}) \\ &+ N_{d} \log(\mu_{d}) - \mu_{d} \\ &- \sum_{i} \log(N_{di}!) \\ &= L_{d,timing} + L_{d,brightness} + L_{d,combinatorial} \end{split}$$

Here, for every DOM *d*:

 $\mu_{ extit{d}i}$ = expected number of photoelectrons in time bin i

 N_{di} = detected number of photoelectrons in time bin i

 μ_d = expected total number of photoelectrons

 N_d = detected total number of photoelectrons

References

Simplified likelihood

Reconstruct only track geometry

• "SPE" likelihood: ignore pulse charges

$$\log(L_d) = \sum_i \log\left(\frac{\mu_{di}}{\mu_d}\right) = \sum_i \log(p(t_i))$$

- "SPEAII": use all pulses
- "SPE1st": use only first pulse every DOM
- "MPE" likelihood: use total charge and time of first hit:

$$L_d = N_d p(t_0) \left[\int_{t_0}^{\infty} p(t) dt \right]^{N_d - 1}$$

D.I Boersm

Event Types Light

Reconstruction

Likelihood

Quality

References

-log(L) map (good neutino event, IC22)

D.I Boersm

Event Type Light

Poconetruction

Likelihood

Quality

Reference

-log(L) map (coincident muons, IC22)

Event Type

Light

Reconstruction

Likelihoo

Quality

Reference:

(To do: a cartoon illustrating what direct hits are)

- Direct hits: N_{dir}, L_{dir}
- Likelihood ratios
- Likelihood width ("paraboloid sigma")

Reconstructi

Likelihoo

Quality

Reference

(To do: a cartoon illustrating what direct length is)

- Direct hits: N_{dir}, L_{dir}
- Likelihood ratios
- Likelihood width ("paraboloid sigma")

. . .

Likelihoo

Quality

References

(To do: a cartoon illustrating the use of likelihood ratios)

- Direct hits: N_{dir}, L_{dir}
- Likelihood ratios
- Likelihood width ("paraboloid sigma")

Reconstruction

Likelihood

Quality

Reference:

(To do: a cartoon illustrating what a paraboloid error ellips)

- Direct hits: Nair, Lair
- Likelihood ratios
- Likelihood width ("paraboloid sigma")

D.I. Boorom

Event Type:

Reconstructio

Likelino

Quality

References

Paraboloid

Error Ellipse vs. Llh Total PSF Minimum Cut dCorsika Single Muons μ-Filtered

Quality

Reduced log-likelihood

Reconstruction

Likelihoo

Quality

References

Some reference material

- arXiv:astro-ph/0403367v1: Till Neunhöffer, Estimating the angular resolution of tracks in neutrino telescopes based on a likelihood analysis, Astropart. Phys. 25 (2006) 220-225
- arXiv:astro-ph/0407044: J. Ahrens et al., Muon Track Reconstruction and Data Selection Techniques in AMANDA, Nucl. Instrum. Meth. A524 (2004) 169
- arXiv:astro-ph/0506136: George Japaridze and Mathieu Ribordy, Realistic arrival time distribution from an isotropic light source
- arXiv:astro-ph/0611604: M. Ribordy, Reconstruction of Composite Events in Neutrino Telescopes
- arXiv:astro-ph/0702108: J. Lundberg et al., Light tracking through ice and water Scattering and absorption in heterogeneous media with Photonics, Nucl. Instrum. Meth. A581 (2007) 619-631
- arXiv:0704.1706: N. van Eijndhoven, O. Fadiran, G. Japaridze, Implementation of a Gauss convoluted Pandel PDF for track reconstruction in Neutrino Telescopes, Astropart. Phys. 28 (2007) 456-462
- wikipedia: Cramér-Rao bound
- Reconstruction of high energy muons in IceCube: paper in preparation