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1 Introduction

We typically conduct an investigation to learn about specific characteristics of a collection of
objects, known as a population of interest. In one study, the population might consist of all
the people in the United States or all products made by a factory in a given year. Constraints
on time, money, and other scarce resources usually make the study of the entire population
impractical or infeasible. Instead, a subset of the population—a sample—is selected. Thus we
might obtain a sample of bearings from a particular production run as a basis for investigating
whether bearings are conforming to manufacturing specifications. We use statistical analysis
to make estimates about the characteristics of the entire population, from a measurement of
the characteristic in a sample. If we know the characteristics of the population, however, we
can use probability to predict the characteristics of a sample. If I have a bucket of marbles
of different colours, and I know how many marbles of each colour are in the bucket, I can use
probability to guess what would be in my hand if I grabbed a handful.If I knew nothing about
the marbles in the bucket, but I have a handful of marbles, I could use statistics to guess what
kinds of marbles are in the bucket.

2 Data

2.1 Types of Data
At the highest level, we classify data into

¢ Quantitative: dealing with numbers or values that can be objectively measured, like
height, length, temperature etc.

e Qualitative: dealing with features that can only be subjectively classified, like smells,
colours etc.

When dealing with Quantitative or numeric data, one may further distinguish between discrete
and continuous data. Discrete data is used to measure countable objects, which cannot be
subdivided, such as the number of passengers on a plane, or the number of neutrino events in a
detector. Continuous data, on the other hand, is used to measure quantities that are divisible
onto a continuum of increasing precision, such as the height of a person, which can be measured
in metres, or centimetres, or the energy deposited by a neutrino in a detector.

Qualitative data, on the other hand, can be further classified into

¢ Binomial:classification into one of two mutually exclusive categories, a question where
the answer is either a yes or a no. E.g. Did the neutrino deposit energy in the detector?

e Nominal:data linked to distinct labels, which cannot be ordered. E.g. Favourite flavour
of ice-cream

e Ordinal:data which is classified into categories that can be ordered, such as clothes sizes.
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2.2 Histograms

Consider data consisting of observations of a variable x. We may visualize the data using a
histogram, a type of plot where the data is placed into discrete bins and for each bin a value
proportional to the number of counts in the bin is assigned. The value we assign may be:

e Counts per bin: the number of times values lying in a particular bin occur in the data
set. We use n; to denote the number of values in bin ¢

e Relative Frequency:the fraction or proportion of times the value occurs
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e Density: the Relative Frequency divided by the bin width w;. This can be useful when
the bins have different widths, and the number of counts is therefore proportional to the

area of the bin
n.
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2.3 Measures of Location and Variability

We often summarize numerical datasets via certain quantities that describe the distribution of
the data. One class of descriptors are measures of location, which provide information about
the centre of a distribution of data. Some common measures of location are

e The mean, expectation value or arithmetic average is a useful measure of the centre of a
distribution, but can be unduly affected by extreme outliers
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e The median is obtained by ordering the n observations from smallest to largest, and
selecting the midpoint there is equal probability of lying above or below.

e The mode is the value with the highest probability of appearing, the peak of the distri-
bution

Apart from knowing where a distribution is centred, one often requires information about the
spread of the distribution around the centre. This information is provided by the measure of
variability. The most commonly used measure of variability is the sample standard deviation
o, given by

Aside from these, one is often interested in measuring the degree to which two measure-
ments depend on each other. This is quantified by the linear correlation coefficient(r)

> (i — %) x (y; — 1)
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An r value of 1 means that x and y are strongly positively correlated, i.e. they rise and fall
together. A value of -1, however, implies negative linear correlation. An r value of 0 implies
that there is no linear correlation between x and y. This is not the same as x and y being
independent of each other!
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Figure 1: Several sets of (x, y) points, with the correlation coefficient of x and y for each
set. (By DenisBoigelot, original uploader was Imagecreator - Own work, original uploader was
Imagecreator, CCO, https://commons.wikimedia.org/w/index.php?curid=15165296)

3 Probability

In any situation with multiple outcomes, the study of probabilities provides a method to quan-
tify the likelihood of each outcome. We define an experiment to be any activity with an
uncertain outcome. The set of all outcomes of an experiment is known as the sample space
for the experiment. For example, the sample space (S) of a single flip is either Heads (H)
or Tails (T). If we were to do two consecutive coin flips, the sample space would then be
(HH;HT;TH;TT). Each outcome in the sample space has an associated probability, and we
define an event to be any subset of the sample space, equivalent to any collection of outcomes.
To advance further, we borrow some definitions from set theory.

e Complement: The complement of an event A, denoted by /1, is the set of all outcomes
in the sample space, apart from those in A

e Union: The union of two events A and B, denoted by A |J B, is the event consisting of
all outcomes that are either in A or in B or in both

e Intersection: The intersection of two events A and B, denoted by A () B is the event
consisting of all outcomes that are in both A and B. If there are no events in the intersection
of A and B, they are disjoint or mutually exclusive events

The idea is to assign to each event A a number P(A), called the probability of the event A,
which will measure the chance that A will occur. We further require P(A) to follow some logical
axioms, known as the Kolmogorov Axioms
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e For any event Ain S, P(A) > 0.
o P(A)+P(A)="P(S) =1

e For an infinite collection of mutually exclusive events, A, As, ... in S,
i=1

If for example we had a bucket full of coloured marbles, with 30 red marbles, 20 yellow marbles,
and 40 blue marbles, and we took out a single marble, the sample space would be (red, yellow,
blue). Intuitively, we know we’re more likely to pull out a blue marble than a red one, simply
because there are more blue marbles, while we're least likely to pull out the sparse yellow
marbles. The probability of each event in the sample space must therefore be proportional to
the number of that kind of marble in the bucket, and inversely proportional to the total number
of marbles. We therefore have
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Plyellow) = z0==07710 ~— 90
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P (blue) = Y _

T 30+20+40 90

We see that the axioms are satisfied.

3.1 Conditional Probability

The probabilities assigned to various events depend on what is known about the experimental
situation prior to an experiment. After a single experiment, one may modify the probabilities
on the basis of new information. For example, the probability that IceCube observes a neutrino
from a blazar may vary depending on whether the blazar is flaring or not. We say the probability
of A given B, denoted by A|B is

Pl = P50

From this definition, we see that
P(A[B)P(B) = P(B|A)P(A)

known as Bayes’ Theorem. For example, suppose that of all individuals buying a certain
digital camera, 60% buy a memory card, 40% include an extra battery, and 30% buy both.
Let A: memory card purchased and B: battery purchased. then P(A) = 0.6, P(B) = 0.4,
and P(A(B) = 0.3. Given that we know an individual has purchased an extra battery, the
probability that an optional card was also purchased is

P(ANB) 0.3

P(A|B) = —’P(B) =04- 0.75



StatsLecture
Vedant Basu

4 Probability Distribution Functions

Some physical problems have well-defined probabilities, given by a probability distribution
function (PDF) for continuous variables, or a probability mass function (PMF) for discrete
variables. From the Kolmogorov axioms

> PMF(x;) =1

i=1
/ PDF(x)dx =1
It is also useful to define cumulative probabilities, which represent the probability of getting a
value less than or equal to a specific x

CDF(x) = i PMF(x;)

=1
X

C’DF(X):/ PDF(x)dx
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We can evaluate expectation values from the PDF's using

max

g(_w) = Zg(xl)PMF(xl)

g(x) = /_Oo g(z;)PDF (z;)dz;

[e.9]

Using g(z) = x, we find the mean of the distribution, while g(x) = (v — Z)? gives us the
variance o2. A plethora of important PDFs exist, and we explore here some of the most

commonly encountered.

4.1 Binomial Distribution

A binomial distribution is a mass distribution which describes the probability of the number of
successes in a series of independent experiments with a binary outcome, like tossing a coin or
rolling a dice to obtain a specific number (Bernoulli trial).

If you a roll a dice 4 times, what would be the probability that you would roll a 1 twice? One
way to roll a 1 twice is to roll the 1 in the first two rolls:

5

P(1;1;1;1) = i

1 5
X = X = X
6 6

| =

We observe that the two 1’s could appear anywhere in our sequence, and we require a combi-

natoric factor to account for this
4\ 1.,,5,
P=(3) @0
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The general form of the Binomial distribution can be obtained to be

P = <Z)pk(1 —p)"*

where k is the number of successes, p is the probability of a success in a single trial, and n is the
total number of trials. We find the mean to be np and the standard deviation to be y/np(1 — p)
Exercise: You are doing a magic trick with a normal deck of cards with no jokers. What is the
probability after repeating the trick 5 times that at least one ace was drawn by the participant?
What is the probability that 2 aces were drawn?

4.2 Poisson Distribution

The Poisson Distribution is often used in counting experiments, and may be considered to be
the limiting form of the Binomial Distribution in an experiment in which n is large and p is
small, such that np is finite.
The form of the distribution is

e MNF

k!

where A\ is the expected value, and k is the number of successes. For example, if we see 10
neutrinos a year on average, what is the probability we see 15 in a particular year?

6_10 15

15!

Exercise: At a bus stop, the average rate of buses is one bus per 20 minutes. What is the
probability that 5 buses come within an hour??

P =

P(15) = = 0.03472

4.3 Normal Distribution

The normal distribution is the most important one in all of probability and statistics. Many
numerical populations have distributions that can be fit very closely by an appropriate normal
curve. In addition, even when individual variables themselves are not normally distributed,
sums and averages of the variables will under suitable conditions have approximately a normal
distribution; this is the content of the Central Limit Theorem

1 (z=p)?

e 202
V2mo?

where the mean value is ¢ and the standard deviation is o.

P:

5 Hypothesis Testing

5.1 Notation

Probability of A P(A)
Probability of A given B P(A|B)
Model Parameter Set g

Data T;

Probability of Data given Model P(x;|6)
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5.2 Frequentist vs Bayesian Statistics

A frequentist approach would be to use the data to evaluate whether a given model describes
the data. We do this by calculating what the probability of the observed data is, assuming a
certain underlying model is the truth. The Bayesian approach would be to find the probability
of our model, given our data, and prior beliefs. i.e

P(6]7)="E0PO)

5.3 Log-Likelihood

For a binned analysis, the probability of seeing a certain data distribution is equal to the
product of the probabilities of the individual bin counts

We then optimize these parameters to find the model most likely to produce our data.

5.4 Goodness of Fit

The goodness of fit is a metric used to test how well a model describes data. In the example
above, suppose we measure 10 different observables, and our model predicts each of the 10
observables to be Gaussian distributed with a known mean and variance (so no free parameters
in the model)

where X? follows a x* with 10 degrees of freedom (x3,)

5.5 Test Statistics and p-values

Define a null-hypothesis, which is usually that the effect being studied does not exist. Assuming
the null hypothesis to be true, how likely is it that your data looks the way it does? This is
answered by the p-value. The first step is to define a test statistic, such as the delta chi-squared
(among others).
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Suppose you roll a 6-sided die, and you get a 3. This may happen by random 1 in 6 times, so
it’s not super unlikely. If we rolled the die 8 times, however, and we kept getting 3s, this would
be progressively less likely, and we’d start getting suspicious! A p-value is a good metric to
determine exactly how suspicious we should be Suppose in the above example, we determine,
from data, a x3,, = 25. We evaluate the p-value to be

p= [ xio(x)dz ~5x 1073

and how we interpret this is that, if the model was correct, we would see an observation like
the one we made 0.5% of the time.

In a slightly more advanced example, let’s say our model predicts that our n observables x; are
Gaussian distributed depending on y parameters 8. Then our distribution follows a y? with
n-p degrees of freedom

X2y (R _:iw)f)

7

A good fit to data should have a p-value of about 50%, while a small p-value would indicate
bad agreement between the data and the model. A very high p-value would indicate that the
model errors are overestimated, and should not be as large. We often convert the p-value to an
equivalent ¢ assuming a gaussian distributed null hypothesis. Important significance thresholds
are

e 30: 1/300 chance of observation occurring at random, evidence
e 50: Discovery, 3 x 1077 chance of observation occurring at random

When you go much higher than 50, you want to be careful about claiming significance, because
the chances are you're at the tail of your null hypothesis distribution, and that is likely to
deviate from a Gaussian

5.6 Systematics

Observational uncertainties can be broadly split into statistical uncertainties, and systematics
ones. Statistical uncertainties occur due to finite number of data measurements, and are un-
correlated. Observing for longer/adding more data reduces the statistical uncertainty by \/LN
There are various aspects of the detector operations which we do not understand, which we
must model as systematic effects. In addition to these, there are uncertainties associated with
the various models used, which must also be accounted for. These generally correlate between
different datasets, and are not rectified by adding more data. These are pull terms in the Log-
Likelihood, penalizing the likelihood when it moves systematic parameters away from where
they should physically be

) = ne@) - B

T

In(L(
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Misidentified systematics may affect data results, and you need to carefully evaluate these. A
good way to characterize your systematics is to run trials, and plot the correlation between
your various systematic parameters as a matrix.
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