s, SouTH POLE NEUTRINO OBSERVATORY

Machine Learning
in IceCube

Josh Peterson
2024 |ceCube Summer School

Outline

* Machine learning introduction and general methods
» Decision Trees

* Neural Networks

Outline

* Machine learning introduction and general methods

Machine Learning (ML)

+ A field of artificial intelligence in which you
“teach” a computer to perform a task without
having to explicitly program how to do the task

* A lot of the time, this effectively means
optimizing a function on a set of data
« A lot of linear algebra, calculus, and

* There are many kinds of machine learning
algorithms, but today we will focus on two that
show up very often in IceCube work:

probability

Decision Trees

Neural Networks

Artificial
Intelligence

Machine
Learning

Neural
Networks
Decision

Trees

Tasks

A machine learning algorithm learns how to
perform a specific task. Here are a couple
examples that are common in IceCube:

« Regression: Find a function such that f(x;) =
y; for all x; in the data

» Energy reconstruction, direction
reconstruction

 Classification: Organize x; into n classes for all
x; in the data

* Neutrino flavor identification, separating
atmospheric muons from muon neutrino
events

Classification

Model
15 4 = Disease
e Healthy

™
lD N .- E
~ s TNV ., ©
@ . —
T 54 s ©
[} L] >
s ® E
A

D_ a0

*

_5 -

T T T T T
-10 -5 0 5 10

Gene 1

a SOuUTH POLE NEUTRINO OBSERVATORY

Regression

200

100 ~

=100 ~

—200 ~

Model
e Patients

Gene 1

https://dev.to/petercour/machine-learning-classification-vs-regression-1gn

Types of Learning

* There are many ways to optimize. Here are a couple common examples:
« Supervised learning: Provide the ML algorithm the data x; and the truth y;

« Unsupervised learning: Provide the ML algorithm with the data x;, have it learn qualities of the
data

» Supervised learning is the most common method used in IceCube, due to our huge amount of
simulation

Regression Loss Functions

loss |Equaion |Property
LOSS

L2 Pretty standard
: PXGEOEENE
Functions i
L1 Better at characterizing
Z IF Gxi) = yil outliers than L2
l
* Aloss function is the metric Huber 0.5(f(x;) — y;)? for |f(x;) —y;| <6 Combo of L1 and L2
you use to quantify how Nl :
well your machil;e learning 8(1f(xe) = yul = 0.55) otherwise . | oo
algorithm is performing a Beta eural network produces
task —) 108 @reca e, o) 5 pop
i
* When learning, we
minimize the loss Classification Loss Functions
. Differentloss functionare EaRIE A 1220 A
good for different tasks Binary Cross For 2 classes

entrooy Lose N1 wilyilog(£ (xi)) + (1 = ylog(1 — ()]

l
Cross Entropy exp (f(xi y)) For >2 classes
— Wl
Loss N1 2 —wy,. log
i

Seexp (f(xic))

Training

“Training” refers to optimizing the algorithm to
minimize the loss
* Optimization method depends on the ML algorithm
being trained

For huge amounts of data, stochastic gradient descent
is a very common optimization algorithm

» General Idea: you can roughly find the correct
direction to descend if you use a small batch of your
data to compute the gradient

Batch: A portion of data to use to calculate the
gradient for every step

Epoch: One use of all data you are using to train

UTH POLE NEUTRINO OBSERVATORY

https://www.researchgate.net/figure/A-plot-of-the-gradient-descent-algorithm-left-
and-the-stochastic-gradient-descent_figl 303257470

Overfitting

Generally, we want our ML algorithm to learn things
about the population from which our data sample
comes from

Overfitting occurs when the ML algorithm learns
features that are specific to the sample of data it was
trained on

To prevent this, you could separate your data into the
following sets:

» Training set: The data that you optimize the ML
algorithm with

« Validation set: Used at the end of each epoch to
evaluate performance

« Test set: Used to evaluate performance of the ML
algorithm once training is completed

You generally should stop training when the validation
loss achieves a minimum

Under-fitting

(too simple to
explain the variance)

Appropirate-fitting

Over-fitting

(forcefitting--too
good to be true) HG

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/

1.0
—— Training Loss
-== Validation Loss
0.8
0.6 1
7] .
3 Overfit!
-
0.4 -
024 N
\
0.0 T T T T T T
0 20 40 60 80 100

Regularization

 If the ML algorithm is learning in an undesirable way, | . 1 e PDE() |

you can use regularization to alter the optimization o ‘ oot

» Total Loss = Standard Loss + Regularizing Term 5 -

ax ot Yax e

* Some examples:

* L1/L2 regularization: Apply the L1/L2 loss to the | :;

weights of the model. Good for overdetermined
systems to prevent overfitting L @\

. : b N
« Early stopping: We've seen this before! @
«— loss -«
* Physics informed neural networks: Add loss terms
Y

that enforce specific physics Done <
https://www.nature.com/articles/s42254-021-00314-5

& SOuUTH POLE NEUTRINO OBSERVATORY

Hyperparameters

» These are parameters that affect the training and performance of the ML algorithm that are not optimized
(learning rate, hidden layer size, tree depth, regularization constant, etc.)

* There is no go-to method for determining hyperparameters
» Could use a genetic algorithm or cross validation for hyperparameter selection
» If the training is fast enough / the number of hyperparameters is small enough one can do a grid scan

« Can hand-tune hyperparameters until the desired performance is achieved

SOUTH POLE NEUTRIND OBSERVATORY

Outline

* Machine learning introduction and general methods
» Decision Trees

 Neural Networks

Decision Trees

» A series of binary decisions to give something a
label

- Nodes: Data is sorted based on a binary criteria Leg Number >2 2
» The variables used in a node and the cuts are
what is learned Yes No

» Chosen via information gain

- Leaves: A terminal node representing the class, Shoulder Height

Chicken
probability, or value assigned to the input >3 feet ?

« Can be used for classification or regression tasks Yes No

Cow Pig

Decision Trees

Boosted Decision Trees: Iteratively train trees on
data weighted by error of the linear combination
of previous trees

Random Forests: Produce many uncorrelated
decision trees with bootstrapping and then
combine their outputs with an ensemble method

Good for when you want to use high level
information (previous reconstructions, for
example)

Very fast to train

Python supports multiple packages for training
decision trees: scikit-learn, XGBoost

—

09 ¢ 0 e
eetss - o7%0%
XY 3 CrY
Original Data Weighted data
Y 900 Y 900
000 Ce0O
X 0000 X 0000
00000 0000
L 1 ' @) @O000
Tree 1 Tree 2

(1, 1,2, 4, 5]

(A, B)

Fo

2,1,3,4,5]
(A, C]

% SOuUTH POLE NEUTRINO OBSERVATORY

e
® 0 g
O
Y

Weighted data

|

@

Y 900
Yol

X 0000
00000®
00000

Tree 3

2,1, 3, 4, 5]
(B, C]

Ensemble
Classifer

Tree N

1,1,3,34]
(A, C]

https://www.nbi.dk/~petersen/Teaching/ML2022/Week1/ML2022_DecisionTrees_

XGboost.pdf

a SOUTH POLE NEUTRIND OBSERVATORY

Decision Tree Examples

Energy Reconstruction

OscNext Event Selection
Probability Distribution [a.u.]

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

| | Signal and Background Rates

>
[}
S, 3
>, 10° 103 ;
ol
v 2]
LICJ 105 10< 4
©
% T\-I‘ 101

4
2 10 T
et
Z £ 100
o 103 3
& R

o 10

40 A]
— 30 A lﬂ_zg
X
o) 20 - 1[.—3

10 - ol | | |

Level2 Level3 Leveld Levels FLERCMNN
0 T T T Selection
103 104 10° 10°

True Neutrino Energy [GeV]

SOUTH POLE NEUTRIND OBSERVATORY

Outline

* Machine learning introduction and general methods
» Decision Trees

* Neural Networks

Neural Networks

e An artificial brain
« Series of neurons and connections

» Each neuron uses the output of all
connected neurons from a previous
layer as input

* Each connection has an associated
weight

» Linear combination of inputs is
passed to a non-linear activation
function

« The weights and biases are what are
learned

(a) (b)
dendrites
i i _'> yj
cell bod
A
terminal axon (d)
Input 18t hidden 2n hidden Output
layer layer layer layer

% %J’

synapse

https://www.researchgate.net/figure/A-biological-neuron-in-comparison-to-an-artificial-neural-
network-a-human-neuron-b_fig2 339446790

SOuUTH POLE NEUTRINO OBSERVATORY

Activation Functions

An activation function is used to
produce non-linearity in the neural
network

Tend to be chosen to have an “on/off”
type behavior, like a neuron

For deep neural networks, RelU is a
good first choice to use

» Does not have saturation / second
order gradient issues

Activation Functions

Siamoid Leaky RelLU

g 1 max(0.1z,)
J($)2: 1+e—* ’
tanh Maxout
tanh(x) E max(wix + by, wd x + by)
ReLU ELU
max (0, x) {‘E e

. ae®—1) z<0 - - 10

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-
9689331ba092

Neural Network Architectures

° /
* There are many kinds of neural networks, they o
are usually designed to exploit different { //
features of data w ﬁ {//
 Multilayer Perceptron { /1’/2// /
» The simplest neural network (shown in slide {}//
1) P //
* Convolutional Neural Networks (CNNs) >
* Good for uniform data with translational

c€
symmetry SOU(

* Recurrent Neural Networks (RNNs)
» Good for data with a specific sequence

https://www.researchgate.net/figure/A-valid-convolution-of-a-5x5-image-with-a-
3x3-kernel-The-kernel-will-be-applied-to_figh 322505397

Neural Network Architectures

More advanced architectures:

Graph Neural Networks (GNNs)

» Good for data that can be naturally described

as a graph (point cloud data, for example)

Transformers

Better version of RNN, CNN

Input

Hidden layer

RelLU

i 2 e

a SOuUTH POLE NEUTRINO OBSERVATORY

Hidden layer

Neural Networks

Good for low level data / more complex data
structures (photon hits, voltage waveforms, etc.)

Can pick up on features of the data that may be
missed by traditional reconstruction methods

There are many packages that support training
and using neural networks

» Tensorflow / Keras
* PyTorch
* GraphNet
For large amounts of data or large models a GPU

may be needed for training in a reasonable
amount of time

ADC Voltage (mV)

4.03 Photoelectrons

. 1,
ﬁk 5'ﬂ”ﬂhﬁﬂ#ﬁfJ$_ A — - ==
Tl

1 | | ||
11400 11600 11800 12000 12200
Time (ns)

Ry -

,,

.
'.
g 7
>
.
”

12400

0.8

0.6

0.4

0.2

Photoelectrons

ICECUBE

SOuUTH POLE NEUTRINO OBSERVATORY

Examples in IceCube oynedge (NN

v/u T/C

0.9 -

_ _Threshold _ _

Latitude [b]

Latitude [b]

2
(il
0
@
.E 0.8
DNN for cascade direction reconstruction £
Q
15¢ Y. Optical E 0.7 4
A (0.025,0.782) w—]?!\I[)JTC:U.QZS - %\%Tc: 0671 [02
0.6 4 Dynedge Dynedge
2.0 ® (0.003, 0.602) = AUC: 0.962 = AUC: 0.713
y Gamma Ray; § 0 O
% 0.0 0.1 0.2 0.3 04 05 06 0.0 0.2 0.4 0.6 0.8 1.0
058 False Positive Rate False Positive Rate
4

Northern Sky Northern Sky

Latitude [b]
N
Weight
[sr]

Light Yield Generative CNN

R e ilatiem
FE=-SIMLNETIon

Southern Sky Southern Sky

oo
3]

-1

Latitude [b]

Weight [sr

Analytic Approx.

HO

[T BT BT

Latitude [b]

.0
Galactic Coord. g
— g R, A e et [abulated MC
d8 M= Hypothesis (Generator SR
c =
~ A=)
(%]
-120° -180° . n W
Galactic Longitude [/]

[Expectation A |

v
[Gradlient]<—-[Likelihood]<-[Data fl

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

