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Machine Learning (ML)

• A field of artificial intelligence in which you 

“teach” a computer to perform a task without 

having to explicitly program how to do the task

• A lot of the time, this effectively means 

optimizing a function on a set of data

• A lot of linear algebra, calculus, and 

probability

• There are many kinds of machine learning 

algorithms, but today we will focus on two that 

show up very often in IceCube work:

• Decision Trees

• Neural Networks
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Tasks

• A machine learning algorithm learns how to 

perform a specific task.  Here are a couple 

examples that are common in IceCube:

• Regression:  Find a function such that 𝑓 𝑥𝑖 =
𝑦𝑖 for all 𝑥𝑖 in the data

• Energy reconstruction, direction 

reconstruction

• Classification:  Organize 𝑥𝑖 into n classes for all 

𝑥𝑖 in the data

• Neutrino flavor identification, separating 

atmospheric muons from muon neutrino 

events

https://dev.to/petercour/machine-learning-classification-vs-regression-1gn



Types of Learning

• There are many ways to optimize.  Here are a couple common examples:

• Supervised learning:  Provide the ML algorithm the data 𝑥𝑖 and the truth 𝑦𝑖

• Unsupervised learning:  Provide the ML algorithm with the data 𝑥𝑖 , have it learn qualities of the 

data

• Supervised learning is the most common method used in IceCube, due to our huge amount of 

simulation



Loss 

Functions

• A loss function is the metric 

you use to quantify how 

well your machine learning 

algorithm is performing a 

task

• When learning, we 

minimize the loss

• Different loss function are 

good for different tasks

Loss Equation Property

L2
෍

𝑖

𝑓(𝑥𝑖) − 𝑦𝑖
2 Pretty standard

L1
෍

𝑖

|𝑓(𝑥𝑖) − 𝑦𝑖|
Better at characterizing 
outliers than L2

Huber
ቊ

0.5(𝑓(𝑥𝑖) − 𝑦𝑖)2 𝑓𝑜𝑟 𝑓(𝑥𝑖) − 𝑦𝑖 < δ

δ 𝑓(𝑥𝑖) − 𝑦𝑖 − 0.5δ  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Combo of L1 and L2
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− ෍
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log(𝑝𝑏𝑒𝑡𝑎(𝑓α 𝑥𝑖 , 𝑓β(𝑥𝑖)))
Neural network produces 
a PDF

Loss Equation Property

Binary Cross 
Entropy Loss

𝑁−1 ෍

𝑖

𝑤𝑖[𝑦𝑖 log 𝑓(𝑥𝑖) + 1 − 𝑦𝑖 log(1 − 𝑓(𝑥𝑖))]
For 2 classes

Cross Entropy 
Loss 𝑁−1 ෍

𝑖

−wyi
log

exp 𝑓 𝑥𝑖,𝑦𝑖

σ𝐶 exp 𝑓 𝑥𝑖,𝐶

For >2 classes

Regression Loss Functions

Classification Loss Functions



Training

• “Training” refers to optimizing the algorithm to 

minimize the loss

• Optimization method depends on the ML algorithm 

being trained

• For huge amounts of data, stochastic gradient descent 

is a very common optimization algorithm

• General Idea:  you can roughly find the correct 

direction to descend if you use a small batch of your 

data to compute the gradient

• Batch:  A portion of data to use to calculate the 

gradient for every step

• Epoch:  One use of all data you are using to train

https://www.researchgate.net/figure/A-plot-of-the-gradient-descent-algorithm-left-
and-the-stochastic-gradient-descent_fig1_303257470



Overfitting
• Generally, we want our ML algorithm to learn things 

about the population from which our data sample 

comes from

• Overfitting occurs when the ML algorithm learns 

features that are specific to the sample of data it was 

trained on

• To prevent this, you could separate your data into the 

following sets:

• Training set:  The data that you optimize the ML 

algorithm with

• Validation set:  Used at the end of each epoch to 

evaluate performance

• Test set:  Used to evaluate performance of the ML 

algorithm once training is completed

• You generally should stop training when the validation 

loss achieves a minimum

Overfit!

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/



Regularization

• If the ML algorithm is learning in an undesirable way,  

you can use regularization to alter the optimization

• Total Loss = Standard Loss + Regularizing Term

• Some examples:

• L1/L2 regularization:  Apply the L1/L2 loss to the 

weights of the model.  Good for overdetermined 

systems to prevent overfitting

• Early stopping:  We’ve seen this before!

• Physics informed neural networks:  Add loss terms 

that enforce specific physics
https://www.nature.com/articles/s42254-021-00314-5



Hyperparameters

• These are parameters that affect the training and performance of the ML algorithm that are not optimized 

(learning rate, hidden layer size, tree depth, regularization constant, etc.)

• There is no go-to method for determining hyperparameters

• Could use a genetic algorithm or cross validation for hyperparameter selection

• If the training is fast enough / the number of hyperparameters is small enough one can do a grid scan

• Can hand-tune hyperparameters until the desired performance is achieved
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Decision Trees

• A series of binary decisions to give something a 

label

• Nodes:  Data is sorted based on a binary criteria

• The variables used in a node and the cuts are 

what is learned

• Chosen via information gain

• Leaves:  A terminal node representing the class, 

probability, or value assigned to the input

• Can be used for classification or regression tasks

Data

Leg Number > 2 ?

Shoulder Height 
> 3 feet ?

Chicken

PigCow

Yes

Yes No

No



Decision Trees

• Boosted Decision Trees:  Iteratively train trees on 

data weighted by error of the linear combination 

of previous trees

• Random Forests:  Produce many uncorrelated 

decision trees with bootstrapping and then 

combine their outputs with an ensemble method

• Good for when you want to use high level 

information (previous reconstructions, for 

example)

• Very fast to train

• Python supports multiple packages for training 

decision trees:  scikit-learn, XGBoost
https://www.nbi.dk/~petersen/Teaching/ML2022/Week1/ML2022_DecisionTrees_
XGboost.pdf



Decision Tree Examples
Energy Reconstruction

OscNext Event Selection
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Neural Networks

• An artificial brain

• Series of neurons and connections

• Each neuron uses the output of all 

connected neurons from a previous 

layer as input

• Each connection has an associated 

weight

• Linear combination of inputs is 

passed to a non-linear activation 

function

• The weights and biases are what are 

learned

https://www.researchgate.net/figure/A-biological-neuron-in-comparison-to-an-artificial-neural-
network-a-human-neuron-b_fig2_339446790



Activation Functions

• An activation function is used to 

produce non-linearity in the neural 

network

• Tend to be chosen to have an “on/off” 

type behavior, like a neuron

• For deep neural networks, ReLU is a 

good first choice to use

• Does not have saturation / second 

order gradient issues

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-
9689331ba092



Neural Network Architectures

• There are many kinds of neural networks, they 

are usually designed to exploit different 

features of data

• Multilayer Perceptron

• The simplest neural network (shown in slide 

17)

• Convolutional Neural Networks (CNNs)

• Good for uniform data with translational 

symmetry

• Recurrent Neural Networks (RNNs)

• Good for data with a specific sequence
https://www.researchgate.net/figure/A-valid-convolution-of-a-5x5-image-with-a-
3x3-kernel-The-kernel-will-be-applied-to_fig5_322505397



Neural Network Architectures

• More advanced architectures:

• Graph Neural Networks (GNNs)

• Good for data that can be naturally described 

as a graph (point cloud data, for example)

• Transformers

• Better version of RNN, CNN

https://theaisummer.com/Graph_Neural_Networks/



Neural Networks
• Good for low level data / more complex data 

structures (photon hits, voltage waveforms, etc.)

• Can pick up on features of the data that may be 

missed by traditional reconstruction methods

• There are many packages that support training 

and using neural networks

• Tensorflow / Keras

• PyTorch

• GraphNet

• For large amounts of data or large models a GPU 

may be needed for training in a reasonable 

amount of time



Examples in IceCube Dynedge (GNNs)

Light Yield Generative CNN

DNN for cascade direction reconstruction



Questions?
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