
Machine Learning

in IceCube
Josh Peterson

2024 IceCube Summer School

Outline

• Machine learning introduction and general methods

• Decision Trees

• Neural Networks

Outline

• Machine learning introduction and general methods

• Decision Trees

• Neural Networks

Machine Learning (ML)

• A field of artificial intelligence in which you

“teach” a computer to perform a task without

having to explicitly program how to do the task

• A lot of the time, this effectively means

optimizing a function on a set of data

• A lot of linear algebra, calculus, and

probability

• There are many kinds of machine learning

algorithms, but today we will focus on two that

show up very often in IceCube work:

• Decision Trees

• Neural Networks

Artificial
Intelligence

Machine
Learning

Decision
Trees

Neural
Networks

Tasks

• A machine learning algorithm learns how to

perform a specific task. Here are a couple

examples that are common in IceCube:

• Regression: Find a function such that 𝑓 𝑥𝑖 =
𝑦𝑖 for all 𝑥𝑖 in the data

• Energy reconstruction, direction

reconstruction

• Classification: Organize 𝑥𝑖 into n classes for all

𝑥𝑖 in the data

• Neutrino flavor identification, separating

atmospheric muons from muon neutrino

events

https://dev.to/petercour/machine-learning-classification-vs-regression-1gn

Types of Learning

• There are many ways to optimize. Here are a couple common examples:

• Supervised learning: Provide the ML algorithm the data 𝑥𝑖 and the truth 𝑦𝑖

• Unsupervised learning: Provide the ML algorithm with the data 𝑥𝑖 , have it learn qualities of the

data

• Supervised learning is the most common method used in IceCube, due to our huge amount of

simulation

Loss

Functions

• A loss function is the metric

you use to quantify how

well your machine learning

algorithm is performing a

task

• When learning, we

minimize the loss

• Different loss function are

good for different tasks

Loss Equation Property

L2
෍

𝑖

𝑓(𝑥𝑖) − 𝑦𝑖
2 Pretty standard

L1
෍

𝑖

|𝑓(𝑥𝑖) − 𝑦𝑖|
Better at characterizing
outliers than L2

Huber
ቊ

0.5(𝑓(𝑥𝑖) − 𝑦𝑖)2 𝑓𝑜𝑟 𝑓(𝑥𝑖) − 𝑦𝑖 < δ

δ 𝑓(𝑥𝑖) − 𝑦𝑖 − 0.5δ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Combo of L1 and L2

Beta
− ෍

𝑖

log(𝑝𝑏𝑒𝑡𝑎(𝑓α 𝑥𝑖 , 𝑓β(𝑥𝑖)))
Neural network produces
a PDF

Loss Equation Property

Binary Cross
Entropy Loss

𝑁−1 ෍

𝑖

𝑤𝑖[𝑦𝑖 log 𝑓(𝑥𝑖) + 1 − 𝑦𝑖 log(1 − 𝑓(𝑥𝑖))]
For 2 classes

Cross Entropy
Loss 𝑁−1 ෍

𝑖

−wyi
log

exp 𝑓 𝑥𝑖,𝑦𝑖

σ𝐶 exp 𝑓 𝑥𝑖,𝐶

For >2 classes

Regression Loss Functions

Classification Loss Functions

Training

• “Training” refers to optimizing the algorithm to

minimize the loss

• Optimization method depends on the ML algorithm

being trained

• For huge amounts of data, stochastic gradient descent

is a very common optimization algorithm

• General Idea: you can roughly find the correct

direction to descend if you use a small batch of your

data to compute the gradient

• Batch: A portion of data to use to calculate the

gradient for every step

• Epoch: One use of all data you are using to train

https://www.researchgate.net/figure/A-plot-of-the-gradient-descent-algorithm-left-
and-the-stochastic-gradient-descent_fig1_303257470

Overfitting
• Generally, we want our ML algorithm to learn things

about the population from which our data sample

comes from

• Overfitting occurs when the ML algorithm learns

features that are specific to the sample of data it was

trained on

• To prevent this, you could separate your data into the

following sets:

• Training set: The data that you optimize the ML

algorithm with

• Validation set: Used at the end of each epoch to

evaluate performance

• Test set: Used to evaluate performance of the ML

algorithm once training is completed

• You generally should stop training when the validation

loss achieves a minimum

Overfit!

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/

Regularization

• If the ML algorithm is learning in an undesirable way,

you can use regularization to alter the optimization

• Total Loss = Standard Loss + Regularizing Term

• Some examples:

• L1/L2 regularization: Apply the L1/L2 loss to the

weights of the model. Good for overdetermined

systems to prevent overfitting

• Early stopping: We’ve seen this before!

• Physics informed neural networks: Add loss terms

that enforce specific physics
https://www.nature.com/articles/s42254-021-00314-5

Hyperparameters

• These are parameters that affect the training and performance of the ML algorithm that are not optimized

(learning rate, hidden layer size, tree depth, regularization constant, etc.)

• There is no go-to method for determining hyperparameters

• Could use a genetic algorithm or cross validation for hyperparameter selection

• If the training is fast enough / the number of hyperparameters is small enough one can do a grid scan

• Can hand-tune hyperparameters until the desired performance is achieved

Outline

• Machine learning introduction and general methods

• Decision Trees

• Neural Networks

Decision Trees

• A series of binary decisions to give something a

label

• Nodes: Data is sorted based on a binary criteria

• The variables used in a node and the cuts are

what is learned

• Chosen via information gain

• Leaves: A terminal node representing the class,

probability, or value assigned to the input

• Can be used for classification or regression tasks

Data

Leg Number > 2 ?

Shoulder Height
> 3 feet ?

Chicken

PigCow

Yes

Yes No

No

Decision Trees

• Boosted Decision Trees: Iteratively train trees on

data weighted by error of the linear combination

of previous trees

• Random Forests: Produce many uncorrelated

decision trees with bootstrapping and then

combine their outputs with an ensemble method

• Good for when you want to use high level

information (previous reconstructions, for

example)

• Very fast to train

• Python supports multiple packages for training

decision trees: scikit-learn, XGBoost
https://www.nbi.dk/~petersen/Teaching/ML2022/Week1/ML2022_DecisionTrees_
XGboost.pdf

Decision Tree Examples
Energy Reconstruction

OscNext Event Selection

Outline

• Machine learning introduction and general methods

• Decision Trees

• Neural Networks

Neural Networks

• An artificial brain

• Series of neurons and connections

• Each neuron uses the output of all

connected neurons from a previous

layer as input

• Each connection has an associated

weight

• Linear combination of inputs is

passed to a non-linear activation

function

• The weights and biases are what are

learned

https://www.researchgate.net/figure/A-biological-neuron-in-comparison-to-an-artificial-neural-
network-a-human-neuron-b_fig2_339446790

Activation Functions

• An activation function is used to

produce non-linearity in the neural

network

• Tend to be chosen to have an “on/off”

type behavior, like a neuron

• For deep neural networks, ReLU is a

good first choice to use

• Does not have saturation / second

order gradient issues

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-
9689331ba092

Neural Network Architectures

• There are many kinds of neural networks, they

are usually designed to exploit different

features of data

• Multilayer Perceptron

• The simplest neural network (shown in slide

17)

• Convolutional Neural Networks (CNNs)

• Good for uniform data with translational

symmetry

• Recurrent Neural Networks (RNNs)

• Good for data with a specific sequence
https://www.researchgate.net/figure/A-valid-convolution-of-a-5x5-image-with-a-
3x3-kernel-The-kernel-will-be-applied-to_fig5_322505397

Neural Network Architectures

• More advanced architectures:

• Graph Neural Networks (GNNs)

• Good for data that can be naturally described

as a graph (point cloud data, for example)

• Transformers

• Better version of RNN, CNN

https://theaisummer.com/Graph_Neural_Networks/

Neural Networks
• Good for low level data / more complex data

structures (photon hits, voltage waveforms, etc.)

• Can pick up on features of the data that may be

missed by traditional reconstruction methods

• There are many packages that support training

and using neural networks

• Tensorflow / Keras

• PyTorch

• GraphNet

• For large amounts of data or large models a GPU

may be needed for training in a reasonable

amount of time

Examples in IceCube Dynedge (GNNs)

Light Yield Generative CNN

DNN for cascade direction reconstruction

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

