Event Selections

IceCube Summer School 2024

Zoë Rechav

Heavily borrowed from Marjon Moulai, Kayla Leonard DeHolton, Steve Sclafani

Event Selections

What are they?

General Techniques Case Studies

What is an IceCube event?

- An event is just a series of **pulses**: charge and timing information from each DOM
- Detector is always taking data of events
- After cleaning and <u>before</u> <u>'selecting'</u> events, roughly
 4 million events seen in the detector per day

a few microseconds in IceCube \rightarrow looks like a mess

Types of Events

Atmospheric Muons 100 Billion Atmospheric Neutrinos 100 Thousand Astrophysical Neutrinos 10

Track Event \rightarrow (angular res.)

Cascades Tracks

← Cascade Event (energy res.)

Mission of event selection \rightarrow gather <u>vour</u> events

Atmospheric Muons 100 Billion
Atmospheric Neutrinos 100 Thousand
Astrophysical Neutrinos 10 \rightarrow Cosmic Ray WG
 \rightarrow Oscillations, Diffuse
 \rightarrow Diffuse Spectrum

Cascades Tracks

Different analyses care about different types of events

Most of the job is \rightarrow

- keeping as many of your events as possible
- developing/implementing techniques to differentiate events
- identifying events to answer your physics question
- a LOT harder than it sounds

Event Selections

What are they? General Techniques Case Studies

Filtering – The First Step

For each event:

- Charge
- Time

For each DOM in detector

Can <u>broadly</u> identify event types

Some examples:

- Cascade Filter
- Muon Filter
- Deepcore Filter

Post Filtering \rightarrow Find the Neutrinos: Using Earth (event zenith)

Southern Sky:

- IceCube is on southern surface
- neutrinos and muons reach detector

Northern Sky:

- Earth is a muon shield
- Only neutrinos reach IceCube

Looking at Northern sky only \rightarrow eliminates most muons from your sample

If you want to include Southern sky...

Find the Neutrinos: Veto Regions

- Muons leave light along entire path of travel (energy losses) \rightarrow track-like
- Look for events that don't do $^{\wedge \wedge} \rightarrow$ more likely to be neutrinos

Find the Neutrinos: Veto Regions

- Muons leave light along entire path of travel (energy losses) \rightarrow track-like
- Look for events that don't do $^{\wedge \wedge} \rightarrow$ more likely to be neutrinos

Find the Neutrinos: Veto Regions

- Muons leave light along entire path of travel (energy losses) \rightarrow track-like
- Look for events that don't do $^{\wedge \wedge} \rightarrow$ more likely to be neutrinos

Neutrinos: Atmospheric vs. Astrophysical (Energy)

Looking only at neutrino events → cannot differentiate atmospheric vs.
astrophysical

- Simplest case → Look at high energy range
 - Atmospheric neutrinos are lower in energy
 - high energy neutrinos are much more likely to be astrophysical

neutrinos/yea Conventional atmospheric neutrinos (Honda 2006) 104 Astrophysical neutrinos (IC40 limit) Prompt atmospheric neutrinos (Enberg et al.) 10³ 10² high energy range 10 10 10-2 10⁻³ Https://arxiv.org/pdf/1111.2736 3 log10(E_{true}[GeV])

If you want to include lower energy range...

Neutrinos: Atmospheric vs. Astrophysical (Self Veto)

Cosmic Ray Showers : atmospheric neutrinos <u>with accompanying muons</u> reach IceCube

Neutrino and muons arrive <u>very close</u> together in time

Atmospheric neutrinos can have accompanying muons

Astrophysical neutrinos **will not have** accompanying muons

A	cosmic	ray
	showe	r

Neutrinos: Atmospheric vs. Astrophysical (Self Veto)

When muon is rejected, so is the atmospheric neutrino

Higher proportion of astrophysical neutrinos in southern sky due to self veto

More Identification Methods: Neural Networks and BDTs

Can train neural networks and Boosted Decision Trees (BDTs) to differentiate between event types

Example BDT from OscNext (low energy deepcore events):

- Output 0 to 1
- More neutrino-y if ~1
- More muon-y if ~0
- Choose how strict you Want your classifier

LOTS of BDT classifiers in IceCube

They do all sorts of things

15

Event Selections

What are they? General Techniques Case Studies

answering a physics question

Physics Question: Where do Astrophysical Neutrinos Come From?

Potential Strategy → Use track events (good pointing/angular resolution)

Northern Tracks (Diffuse NuMu)

~76,000 events/yr

Goal: Identify neutrino emission from potential sources (galaxies, black holes, etc.) Pinpointing likely sources by searching for significant neutrino excess

19

Point Source (PS) Tracks

~120,000 events/yr

Includes:

- Southern Sky
- 'All Sky' sample
- More neutrino events per year

Harsh energy cut in southern sky to remove atmospheric muons

https://arxiv.org/pdf/1910.08488

Physics Question: What does the Astrophysical Neutrino Flux Look Like?

Potential Strategy \rightarrow Use events that start <u>inside</u> the detector

Starting Events have better energy resolution

HESE: High Energy Starting Events

General Techniques Used:

- High energy only
- Outer layer veto (keep only events that start inside detector)

 Deposited charge > 6000 photoelectrons (help remove atmospheric background)

MESE: Medium Energy Starting Events

- A sample with extended energy range compared to HESE
- Incorporates dynamic veto: energy and zenith dependent

https://wiki.icecube.wisc.edu/index.php/Medium_Energy_Starting_Events

DNNCascades and Machine Learning Techniques:

<u>NO veto layers</u> \rightarrow only BDTs to eliminate _{10³} muon background

High statistics/sensitivity Cascades selection, especially at lower energies

Originally used to **detect neutrino emission**₁₀₋₃ **from Galactic Plane**

DNNCascades

Zoë (me) Optimizing for Astrophysical Diffuse flux measurement

https://arxiv.org/pdf/2307.14842

In General: Event Selections

Start with a physics goal \rightarrow build with developing technologies/modeling methods

Future of Event Selections: Combined Selections

- moving into an era where combined event selections will reveal physics information to us → increased sensitivity, statistics, etc.
- Updating existing event selections with newer techniques
- Learning to account for overlapping events in selections (complicated process)

Summary

- Lots of event types, and lots of ways to select <u>your events</u> of interest
 - Event distribution
 - Morphology (zenith, energy, etc.)
 - Neural Networking and Machine Learning

- Many existing event selections today
 - Always update techniques when you use an existing for your analysis
 - Create your own techniques using physics principles!
 - Combining event selections \rightarrow next era of IceCube Physics