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“It is quite possible that future historians of science will close the chapter
on cosmic rays with the fiftieth anniversary of Hess’s discovery”

—from “Cosmic Rays” Bruno Rossi 1964




Observation of

charged Cosmic Rays

¢ Spectral features —> Scales where interesting physics
appears

¢ The knee, ankle and the GZK suppression remain the
most evident features

¢ But, for the first time, features are appearing in the spectra
of individual elements (H, He, C, ...)

¢ Surprises from anti-matter (positrons, anti-N)
¢ Diffuse y-ray (and v) spectra unexpected
¢ PeVatrons missing in action...

¢ Loose ends? Or something foundational is cracking?
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Spectra of Light Elements in CRs
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¢ Spectra of virtually all elements show a
feature at rigidity R~200 GV
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How do you get different slopes of H and He?

¢ Injection of He (on nuclei in general) is known to be more effective than that of H in
DSA (Ellison, Jones & Eichler 1981; Caprioli, Dennis & Spitkovsky 2017) for high Mach number

¢ If the late phases of a SNR (Mach number <10) are important, the time integrated
spectrum of H can be made steeper than He (very model dependent) (Malkoy,
Diamond, Dagdeev 2012)

¢ If CRs are accelerated in star clusters, spallation reactions of He can harden the
spectrum of escaping He (PB & Morlino 2024)

¢ In this latter case, heavier nuclei cannot escape the star cluster (PB & Morlino 2024)



The origin of the break at 500 GV

¢ A break in the observed spectra can, in ol AMS5-02, 2017

principle, either be due to a break in the 2 Helium

source spectra or a change in the diffusion
o Oxygenx28

properties

¢ The difference between the two scenarios is
that only in the second case the break is
visible also in the Secondary/Primary ratios

A*A‘*A*A
+ Lithiumx200 "

and it is twice as large!

Flux x B [ m2s7'sr (GV)'"]

& Observations show that this is an effect of 0 o S e
TRANSPORT Rigidity & [GV] :



CR clocks: Stable

Elements

Bl B/C and B/O ratiost confirm that the difilgsicn
coefficient requires a break at about 300 GV >
TRANSPORT CHANGES

¢ These ratios are all degenerate with respect to the ratio I/

Do but they do fix such ratio (NOT H2/D, the diffusion time)

€ The ratio returns the energy dependence of D(EK)

¢ Recall that D(E) contains the microphysics of particle
motion, for the first time we are getting detailed info on
such microphysics.
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CR clocks: Stable

Elements

B/C flux ratio
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CR clocks: Unstable

Elements

Of the three 1sotopes of Beryllium, VBe is
unstable with a lifetime of 1.4 Myr and its
decay leads to 1UB.

Its abundance, compared with that of the
stable 1sotopes returns the confinement time

in the Galaxy

For 19Be with sufficiently high E the Lorentz
boosted decay time become longer than the
diffusion time
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Effect of cross sections

¢The Be/B ratio 1s sensitive to the diffusion
time, because the decays of 19Be decrease
the numerator and 1ncrease the
denominator

¢ The AMS-02 data suggest a halo size larger
than 5 kpec

$ The main source of uncertainty is related
to the cross sections for Be and B
production
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Effect of cross sections

¢The Be/B ratio 1s sensitive to the diffusion
time, because the decays of 19Be decrease
the numerator and 1ncrease the
denominator

¢ The AMS-02 data suggest a halo size larger
than 5 kpec

€ The main source of uncertainty is related
to the cross sections for Be and B
production
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Change mn D(E) from what to what?

¢ Short answer: we do not know
¢ At R<1000 TV CR can be self-confined through resonant streaming instability
¢ At R>1000 TV they have to rely upon pre-existing turbulence but...

¢ Alfvenic turbulence develops anisotropy

¢ Fast modes 1sotropic but possibly damped

& No easy way to a smooth transition from low to high enerqies (Kempski+2021)
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Diffusion at high energies

&€ Many investigations of the scattering processes as due to mirrors (Lazarian & Xu 2021),
intermittency (Lemoine 2024, Kempski+2024), resonances, ... FLRW (Pezzi & PB 2024, Recchia &
Gabici 2024)

& In general, D(E) in MHD turbulence strongly depends upon conditions in the plasma
(plasma B, 6B/B, anisotropy...) but...

& The rather new picture of scattering as due to curvature in intermittent MHD
turbulence (Lemoine 2024, Kempski+2024) appears very promising (though only 6B/B>>1)

11



CR transport in intermittent turbulence

Lemoine 2024
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I.LHAASO Knee

All-particle Spectrum
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A picture that starts taking shape...

ATIC-2 (2009)

CREAM-I+1l (2017) ® 444
'

N
>
Y
&
)
y »
» ¢ NUCLEON KLEM (2019) |
o A DAMPE (2019) .-
= +  CALET (2022)
- O ISS-CREAM (2022)
i n KASCADE (2005, QGSJET 01)
w KASCADE (2005, SIBYLL-2.1)
X KASCADE (2013, QGSJET-I1-02)
w ICETOP (2019, SIBYLL-2.1)
v GRAPES-3 (2012, QGSJET 01)
- GRAPES-3 (2012, SIBYLL-2.1)
GRAPES-3 (This work, QGSJET-I1-04)

®e e

10° 10° 10° 10°
Energy (E) [GeV]
Varsi et al. 2024

The DAMPE bump connects well

4{ * g | with the GRAPES measurement of

the spectrum at higher energies

Given the strength of the effect it
seems unlikely that we are looking
at a fluctuation

A new population of sources with
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Knee Pain
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The uncertainty in the position of the proton knee has serious implications on the
description of the transition to extra-Galactic CRs

15



Diffuse gamma rays and neutrinos:
Diffuse emission or sources?
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Diffuse gamma rays and neutrinos:
Diffuse emission or sources?
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* Very different transport, especially in the inner Galaxy, or

% Unresolved sources, or
107! % Extended regions of CR confinement around sources...
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D’Angelo, PB, Amato 2016, 2018
Nava+2016, Recchia+, 2023

SELF-CONFINEMENT NEAR A SNR

The regions around sources have the strongest CR densities and density gradients, which lead to self-confinement, due to
streaming instability. The diffuse gamma ray emission due to the overlap of these regions reflects this (D’Angelo+2018)

= n; = 0. 45cm == n;=0.45cm > n, =0.03cm ° (a =4)
——n;=0.45cm ™ (a=4.2) =+ n;=0.45cm > n, =0.05cm > (o =4)
==n;=0.0lem ™ (a=4) == n;=0.45cm>n, =0.05cm? (o =4.2)

THE PHENOMENON IS REGULATED AND SHAPED BY
DAMPING, ESPECIALLY NLLD

Regions of smaller density in which molecular clouds are
embedded set the best situation in which the confinement
time is the longest and interactions occur in the cloud (Bao,
PB & Chen 2024)
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(GRAMMAGE NEAR THE SOURCE

The grammage near a source, due to self-confinement, depends
on conditions (level of ionisation, coherence length)

Most importantly it depends upon the presence of molecular
clouds in the neighbourhood of a source

..butitis clear that it is not a phenomenon that we can ignore at
a time in which measurements of the grammage are made at
oercent level

. and at a time in which the diffuse fluxes of gamma rays and
neutrinos hint at some possible anomalous behaviour

Bao, PB & Chen 2024
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Where are PeVatrons?

Definition of a PeVatron: “A PeVatron is a source that is able to accelerate particles with a spectrum that

shows a substantial suppression with respect to its low energy power law extrapolation in the region of PeV
energies”

[t follows that a PeVatron would show a hard (slope ~2) power law gamma ray spectrum with a
suppression in the region of hundreds of TeV

These are the sources that we have been looking for as sources of Galactic cosmic rays

It can be argued that if SNRs are PeVatrons, we did not figure out how they can be so...

2]



Direct detection of PeVatrons?

Cao et al. 2024 “The First LHAASO Catalog of Gamma-Ray Sources”

¢ For the first time, LHAASO 1s providing us with the unique
opportunity to answer the question “which sources are
responsible for PeV CR?”

20

-15

¢ Currently 43 sources with gamma rays with E>100 TeV
detected at 4o

—_
(@)

¢ Of these 22 sources have significance >7c

Significance

o1

¢ Of these, for sure some are well known pulsar wind
nebulae, which means that the emission 1s most likely of
0 leptonic origin (electron-positron pairs)

¢ Among PWNe one is the well known Crab Nebula, the only
PeVatron known for sure, BUT the PeV particles are leptons

A2



Direct detection of PeVatrons?

Cao et al. 2024 “The First LHAASO Catalog of Gamma-Ray Sources”

¢ At 1-25 TeV many detected sources with slope consistent ~2-2.5

¢ At higher energies, slope >3, cutoff region?

¢ For >100 TeV only a couple of sources with slope~2-2.5, no clear

association yet
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Particle Acceleration to PeV

In astrophysical plasma, the high conductivity forces electric fields to be short-circuited (no
large scale electrice fields, with few exceptions)

Magnetic fields do not do work on charged particles, hence the energy of the particles cannot
change

The only electric fields allowed are of induced origin (magnetic fields in motion

That 1s why fast moving plasmas (violent phenomena) both ensure high total energetics and

high induced electric fields

The best conditions for acceleration are the regions where dissipation occurs, typically
involving COLLISIONLESS SHOCKS (see talk by Caprioli)
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A plethora of non-linear effects in DSA

See talk by D. Caprioli

¢ Efficient CR acceleration strongly modifies the dynamics of the plasma
motion ahead of the shock —> modified spectrum

¢ Efficient CR acceleration leads to magnetic field amplification —> higher
energies through more effective scattering

¢ Higher B fields mean larger speed of scattering centres —> modified
(steeper) spectrum |Caprioli, Haggerty & PB 2020
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X-ray Observation of the Shock —= l.arge B

The purple filaments are X-ray emission of non-thermal origin,

, . | namely caused by synchrotron emission of high energy
. . * R *  accelerated electrons

The very thin thickness (~0.01 pc) allows us to determine the
magnetic field in that region — about 300 uG, hundreds of time
bl o larger than it should be [see e.g. Vink 2012]
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CONSIDERATIONS ON SNRS AS PEVATRONS

¢ EVEN IN THE PRESENCE OF EFFICIENT CR INDUCED STREAMING INSTABILITY (Bell 2004), THE
CORRESPONDING SCATTERING 1S TOO SLOW TO REACH PeV ENERGIES IN STANDARD SNR (Bell+2013,
Schure+2013, Schure+2014)

¢ THERE ARE SEVERAL CLASSES OF SNRWITH DIFFERENT Emax...

¢ ONLY VERY LUMINOUS, RARE SNR MIGHT BE ABLE TO REACH THESE VERY HIGH ENERGIES
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Star Clusters as
PeVatrons?

See Talk by G. Morlino

¢ Particle Acceleration at a stagnating termination shock of the
collective wind of the cluster (wind speed 2000-3000 km/ s)

§Often times evoked to explain the 22Ne anomaly and also
because most young massive stars are embedded in SC

¢ Gamma ray emission from selected SC has measured by Fermi,
HAWC, LHAASO... great target for y-ray telescopes as LHAASO
(spectrum, morphology, ...)

¢ The main gamma ray emission is produced in the scattering of
CR with molecular gas in the downstream of the termination

shock
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Star Clusters as PeVatrons?

¢ The approximate spherical geometry is
ideal for particle acceleration (the upstream
in inside!)

¢ But leads to a slow rollover that does not
allow to reach very high effective maximum
energy

¢ For the brightest Cygnus OB2, the
maximum energy is appreciably below the
knee

PB&Morlino 2023
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Star Clusters as PeVatrons?

4 While in young, compact star clusters, there has not been enough time for
SN explosions, this is not the case for star clusters older than a few Myr

4 For SN explosions in the outskirts of the core, the maximum energy remains
<PeV (Sushch, PB & Brose, in prep.)

<4 For SN explosions inside the core, the situation might be better but requires
more investigation
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Summary |1

The spectrum of primaries and secondary nuclei shows breaks that signal new pieces of physics:
™ The 200 GV break associated with transport (transition from self-generation to what?)
M The DAMPE feature at 20 TeV likely identifying the end of a class of sources (type [a?)
M GRAPES suggests the H spectrum keeps going at E>20 TeV toward the knee...(made of what?)
The positron ratio expected to drop ... but it rises (pulsars?)
The observed diffuse y-ray and v emission much higher than expected
M Did we mess up transport in the inner Galaxy?
M Did we miss large extended sources (e.g. star clusters)? or unresolved sources?

M Could CR be self-confined near sources for much longer than naively estimated
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Summary |2

SNR long suggested to be PeVatrons, except that:
M We did not find any evidence... probably because we did not have SN explosions in the last 30 years (Emax)?
o ...but also searches of high energy emission around SNRs did not reveal any evidence for PeV particles

™ Theoretically, SNRs of Type Ia and II are NOT expected to be PeVatrons... so which ones? Very rare, perhaps
transrelativistic SNRs?

Star clusters as PeVatrons?

M Gamma ray emission does not show evidence for Enax=PeV in Cygnus, although y-rays @1.4 PeV from
LHAASO!

M Perhaps particle acceleration in SNR in the core of a cluster? to be explored better...
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Summary |5

Shaking pillars of transport?

™ The rise of the positron ratio has stimulated the revival of the Nested Leaky Box (NLB) model (Cowsik
& Wilson 1975; Cowsik&Madziwa-Nussinov 2016) (B produced around the sources, positrons and antiprotons

produced in the ISM)

™ These models struggle to explain many things (beryllium, breaks in the B/C and primaries, etc) but
should be credited for attracting attention on transport around sources

o It is certainly true that CR can accumulate a fraction of the grammage due to self-confinement... or
inside sources... beware when comparing with %level measurements

M At least in the case of TeV halos we have evidence that regions of reduced diffusivity around sources
do exist
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