Investigating the CREDIT history of supernova remnants as cosmic-ray sources

Philipp Mertsch with Anton Stall and Chun Khai Loo

SuGAR 2024 14 October 2024, Madison, WI

Philipp Mertsch

Supernova remnants have long been considered the sources of cosmic rays

Observations

- 2 Energetics
- 3 Shock acceleartion

Lopez and Fesene (2018)

We do not know individual sources of $\mathit{local}\xspace$ cosmic rays

Anisotropies:

Problem: cosmic rays diffuse

We do not know individual sources of *local* cosmic rays

Anisotropies:

Spectrum:

Problem: cosmic rays diffuse

We do not know individual sources of *local* cosmic rays

Anisotropies:

Spectrum:

A

Supernova remnant paradigm

1000 - 100000 "active" supernova remnants in the Galaxy

Genolini et al. (2017)

Problem: cosmic rays diffuse

Galactic sources should accelerate to E_{knee} , probably via shock acceleration

- $E_{\rm knee} \simeq 3 \, {\rm PeV}$: either maximum energy of source or change in transport regime
- $ightarrow E_{
 m max} \gtrsim 3\, {
 m PeV}$ for protons

Axford, Leer, Skadron (1977); Krymskii (1977); Bell (1978); Blandford, Ostriker (1978)

Small energy gain ΔE , little particle loss ΔN per cycle

$$\frac{\frac{\Delta E}{E} \propto \frac{U_{\rm sh}}{c}}{\frac{\Delta N}{N} \propto \frac{U_{\rm sh}}{c}} \right\} \Rightarrow \frac{\mathrm{d}N}{\mathrm{d}E} \propto E^{-2}$$

We do not understand how supernova remnants accelerate to E_{knee}

What is E_{max} ?

We do not understand how supernova remnants accelerate to E_{knee}

What is E_{\max} ?

• Equate age with acceleration time: $t_{age} = t_{acc} = 8 \frac{\kappa}{U_{sh}^2}$ Diffusion coefficient • Assume Bohm diffusion: $\kappa = \frac{c\ell_{mfp}}{3} = \frac{cr_g}{3} = \frac{c}{3} \frac{E_{max}}{qB}$ • Hillas-like relation: $\Rightarrow E_{max} \simeq \frac{U_{sh}^2}{c} qBt_{age}$ or $\frac{U_{sh}}{c} qBR$

• With typical values: $U_{\rm sh}=10^4\,{\rm km\,s}^{-1}\,,~~B=1\,\mu{\rm G}\,,~~t_{\rm age}=10^3\,{\rm yr}$

$$\Rightarrow \textit{E}_{\rm max,b} \simeq 100 \, {\rm TeV} \ll \textit{E}_{\rm knee}$$

Lagage and Cesarsky (1983)

1 Choosing larger t_{age} does not help: $U_{sh} \propto t_{age}^{-3/5}$, so E_{max} decreases with time 2 Need to amplify **B**-field to $B \simeq 100 \,\mu\text{G}$

Combining standard ingredients, we predict novel spectral features

The number of sources contributing to CR flux decreases with energy

• Residence time: $t_{esc} = \frac{z_{max}^2}{2\kappa}$ • Diffusion distance: $R = \sqrt{2\kappa t_{esc}} = z_{max}$ • Source density: $\sigma = \frac{\nu t_{esc}}{\pi R_{disk}^2}$ • Source number: $N_{src} = \sigma \pi R^2 = \nu t_{esc} \frac{z_{max}^2}{R_{disk}^2}$ With typical parameters (for details $\rightarrow Appendix$): $\mathcal{R} = 10 \text{ GV}, \quad 10 \text{ TV}, \quad 10 \text{ PV}$ $N_{src} \simeq 2 \times 10^4, 200, \qquad 4$

Transport equation $\frac{\partial \psi}{\partial t} - \boldsymbol{\nabla} \cdot \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} \psi + \ldots = q$

Transport equation

$$\frac{\partial \psi}{\partial t} - \boldsymbol{\nabla} \cdot \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} \psi + \ldots = q$$

Transport equation

$$\frac{\partial \psi}{\partial t} - \boldsymbol{\nabla} \cdot \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} \psi + \ldots = \boldsymbol{q}$$

Transport equation $\frac{\partial G}{\partial t} - \nabla \cdot \kappa \cdot \nabla G + \ldots = \delta^{(3)} (\mathbf{r} - \mathbf{r}_i) \delta(t - t_i) Q(E)$

Stochastic nature of sources implies fluctuations in spectrum

• Solution:
$$\psi(\mathbf{r}, t, p) = \sum_{i} G(\mathbf{r} - \mathbf{r}_{i}, t - t_{i}, E)$$

• \mathbf{r}_i, t_i are random variables $\Rightarrow \psi(\mathbf{r}, t, p)$ is random variable

• Mean:
$$\langle \psi(\mathbf{x}, t, \rho) \rangle = \int d^3 \mathbf{r}' dt' \, \nu \, \rho(\mathbf{r}') \, G(\mathbf{r} - \mathbf{r}', t - t', E)$$

Can we use $\psi - \langle \psi \rangle$ to find sources?

Stochastic nature of sources implies fluctuations in spectrum

• Solution:
$$\psi(\mathbf{r}, t, p) = \sum_{i} G(\mathbf{r} - \mathbf{r}_{i}, t - t_{i}, E)$$

• \mathbf{r}_i , t_i are random variables $\Rightarrow \psi(\mathbf{r}, t, p)$ is random variable

• Mean:
$$\langle \psi(\mathbf{x}, t, \rho) \rangle = \int d^3 \mathbf{r}' dt' \, \nu \, \rho(\mathbf{r}') \, G(\mathbf{r} - \mathbf{r}', t - t', E)$$

Can we use $\psi - \langle \psi \rangle$ to find sources?

The number of sources contributing to CR flux decreases with sharply energy

• Residence time: $t_{cool} = \frac{E}{E}$ • Diffusion distance: $R = \sqrt{2\kappa t_{cool}}$ • Source density: $\sigma = \frac{\nu t_{cool}}{\pi R_{disk}^2}$ • Source number: $N_{src} = \sigma \pi R^2 = \nu t_{cool} \frac{2\kappa t_{cool}}{R_{disk}^2}$ With typical parameters (for details $\rightarrow \text{(Appendix)}$): $\mathcal{R} = 10 \text{ GV}, \quad 10 \text{ TV}, \quad 10 \text{ PV}$ $N_{src} \simeq 2 \times 10^4, 1, \qquad 10^{-4}$

Electrons and positrons at high energies

- Sensitivity to source distances and ages
- $\rightarrow\,$ Need to consider when comparing to data
- $\rightarrow\,$ Great potential for identifying sources

Mertsch (2018)

Monte Carlo study

- **1** Draw random distances $\{d_i\}$ and ages $\{t_i\}$
- 2 Add contributions from $i = 1, ..., N_{src}$ sources in *one realisation* of the Galaxy
- 3 Repeat for *different realisations* of the Galaxy

N. Frediani, M. Krämer, K. Nippel, P. Mertsch

- Have discrete samples of flux vector $\{\phi_1, \phi_2, \dots, \phi_N\}$
- Want multivariate distribution p(φ₁, φ₂, ... φ_N)
- $\rightarrow\,$ Density estimation task

$$p(\phi_1,\phi_2,\ldots\phi_N)=p(\phi_1)p(\phi_2|\phi_1)\ldots p(\phi_N|\phi_1,\ldots\phi_{N-1})$$

N. Frediani, M. Krämer, K. Nippel, P. Mertsch

- Have discrete samples of flux vector $\{\phi_1, \phi_2, \dots, \phi_N\}$
- Want multivariate distribution $p(\phi_1, \phi_2, \dots, \phi_N)$
- \rightarrow Density estimation task

$$p(\phi_1,\phi_2,\ldots\phi_N)=p(\phi_1)p(\phi_2|\phi_1)\ldots p(\phi_N|\phi_1,\ldots\phi_{N-1})$$

N. Frediani, M. Krämer, K. Nippel, P. Mertsch

- Have discrete samples of flux vector $\{\phi_1, \phi_2, \dots, \phi_N\}$
- Want multivariate distribution p(φ₁, φ₂, ... φ_N)
- \rightarrow Density estimation task

$$p(\phi_1,\phi_2,\ldots\phi_N)=p(\phi_1)p(\phi_2|\phi_1)\ldots p(\phi_N|\phi_1,\ldots\phi_{N-1})$$

N. Frediani, M. Krämer, K. Nippel, P. Mertsch

- Have discrete samples of flux vector $\{\phi_1, \phi_2, \dots, \phi_N\}$
- Want multivariate distribution p(φ₁, φ₂, ... φ_N)
- \rightarrow Density estimation task

$$\boldsymbol{p}(\phi_1,\phi_2,\ldots\phi_N)=\boldsymbol{p}(\phi_1)\boldsymbol{p}(\phi_2|\phi_1)\ldots\boldsymbol{p}(\phi_N|\phi_1,\ldots\phi_{N-1})$$

B-field amplification and CR escape

Bell (2004)

- If B-field too weak, particles escape
- \rightarrow Electric current j
- Waves modes unstable in the presence of current **j**

Bell (2004)

- If *B*-field too weak, particles escape
- \rightarrow Electric current **j**
- Waves modes unstable in the presence of current **j**

- CRs with gyroradius rg tied to field lines
- ightarrow Instability saturates once $\lambda \sim {\it r_g}$

• **B**-field density satisfies
$$\varepsilon_B \sim \frac{U_{sh}}{c} \varepsilon_{CR}$$

Bell (2004)

- If B-field too weak, particles escape
- \rightarrow Electric current j
- Waves modes unstable in the presence of current **j**

- CRs with gyroradius rg tied to field lines
- ightarrow Instability saturates once $\lambda \sim {\it r_g}$

• **B**-field density satisfies
$$\varepsilon_B \sim \frac{U_{sh}}{c} \varepsilon_{CR}$$

Bell (2004)

- If *B*-field too weak, particles escape
- \rightarrow Electric current **j**
- Waves modes unstable in the presence of current j

- CRs with gyroradius rg tied to field lines
- ightarrow Instability saturates once $\lambda \sim {\it r_g}$
- **B**-field density satisfies $\varepsilon_B \sim \frac{U_{\rm sh}}{c} \varepsilon_{\rm CR}$

Bell (2004)

- If B-field too weak, particles escape
- \rightarrow Electric current **j**
- Waves modes unstable in the presence of current **j**

- CRs with gyroradius rg tied to field lines
- ightarrow Instability saturates once $\lambda \sim {\it r_g}$
- **B**-field density satisfies $\varepsilon_B \sim \frac{U_{\rm sh}}{c} \varepsilon_{\rm CR}$

Bell instability makes optimal use of $\mathbf{j}\times\mathbf{B}$ force

Slide concept: T. Bell

• Growth rate:

 $\gamma \sim \sqrt{\frac{jBk}{
ho}}$ or $\frac{\gamma^2}{k} \sim \frac{jB}{
ho}$

• Compare to acceleration of fluid element of size $z \sim 1/k$ in time $t \sim 1/\gamma$:

$$rac{z}{t^2} \sim rac{1}{
ho} \left| \mathbf{j} imes \mathbf{B}
ight| \lesssim rac{jB}{
ho} \qquad o \qquad rac{\gamma^2}{k} \lesssim rac{jB}{
ho}$$

Bell instability makes optimal use of $\mathbf{j}\times\mathbf{B}$ force

Slide concept: T. Bell

- Growth rate:
- Compare to acceleration of fluid element of size $z \sim 1/k$ in time $t \sim 1/\gamma$:

$$rac{z}{t^2} \sim rac{1}{
ho} \left| \mathbf{j} imes \mathbf{B}
ight| \lesssim rac{jB}{
ho} \qquad o \qquad rac{\gamma^2}{k} \lesssim rac{jB}{
ho}$$

 $\gamma \sim \sqrt{\frac{jBk}{\rho}}$ or $\frac{\gamma^2}{k} \sim \frac{jB}{\rho}$

Wave number

Grows rapidly on small scales

The highest CR energies can be achieved at start of Sedov-Taylor phase

- Shock speed $U_{\rm sh}$ enters into growth rate γ through escape current j
- Saturation field $B \propto U_{\rm sh}^{3/2}$
- $U_{
 m sh} \propto t_{
 m age}^{-3/5}$

$$ightarrow \, E_{
m max} \propto U_{
m sh}^2 B t_{
m age} \propto t_{
m age}^{-11/10}$$

also Gabici, Aharonian, Casanova (2009); Caprioli, Blasi, Amato (2010); Blasi and Amato (2012); Thoudam and Hörandel (2012)

- *E*_{max} decreases with time
- At any one time t, particles of energy $E_{max}(t)$ escape
- Ultimately, all particles with $E < E_{max,b}$ escape

also Gabici, Aharonian, Casanova (2009); Caprioli, Blasi, Amato (2010); Blasi and Amato (2012); Thoudam and Hörandel (2012)

- *E*_{max} decreases with time
- At any one time t, particles of energy $E_{max}(t)$ escape
- Ultimately, all particles with $E < E_{max,b}$ escape

Cosmic-Ray Energy-Dependent Injection Time (CREDIT) scenario

The Green's function has narrow spectral features

$$\frac{\partial G}{\partial t} - \boldsymbol{\nabla} \cdot \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} G = \delta^{(3)} (\mathbf{r} - \mathbf{r}_i) \delta(t - t_i - t_{\rm esc}(E)) Q(E)$$

The Green's function has narrow spectral features

$$\frac{\partial G}{\partial t} - \boldsymbol{\nabla} \cdot \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} G = \delta^{(3)}(\mathbf{r} - \mathbf{r}_i)\delta(t - t_i - t_{\rm esc}(E))Q(E)$$

The Green's function has narrow spectral features

$$\frac{\partial G}{\partial t} - \boldsymbol{\nabla} \cdot \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} G = \delta^{(3)}(\mathbf{r} - \mathbf{r}_i)\delta(t - t_i - t_{\mathsf{esc}}(E))Q(E)$$

CREDIT scenario predicts dramatic spectral features

Stall, Loo, Mertsch, arXiv:2409.11012

CREDIT scenario predicts dramatic spectral features

Stall, Loo, Mertsch, arXiv:2409.11012

Modern proton data offer unprecedented accuracy

V. Choutko (2015), An et al. (2019), Aguilar et al. (2020),

AMS-02

DAMPE

Statistical errors are much smaller than CREDIT features

Stall, Loo, Mertsch, arXiv:2409.11012

We can confidently discriminate between the different scenarios

Stall, Loo, Mertsch, arXiv:2409.11012

Can discriminate features from statistical fluctuations?

 \rightarrow Classical machine learning task

Decision tree

We can confidently discriminate between the different scenarios

Stall, Loo, Mertsch, arXiv:2409.11012

 \rightarrow Classical machine learning task

Decision tree

The classification is very robust

Stall, Loo, Mertsch, arXiv:2409.11012

The classification is very robust

Stall, Loo, Mertsch, arXiv:2409.11012

Accuracy virtually unchanged

The results are going to be interesting either way

Classifier finds ...

- 1. CREDIT scenario
- \rightarrow Investigate sources

The results are going to be interesting either way

Classifier finds ...

- 1. CREDIT scenario
- \rightarrow Investigate sources

2. Burst-like scenario $(E_{\max,b} \to \infty)$

 \rightarrow Constraints on acceleration models

upstream rest frame

downstream rest frame

The results are going to be interesting either way

Classifier finds ...

- 1. CREDIT scenario
- \rightarrow Investigate sources

 \rightarrow Constraints on acceleration models

3. Smooth scenario

 \rightarrow Trouble for supernova remnant paradigm

Summary & Conclusion

Time scales

Time scales:

• $t_{\text{diff}} = \frac{z_{\text{max}}^2}{2\kappa}$ with $z_{\text{max}} = 5 \text{ kpc}$, $\kappa (10 \text{ GV}) = 5 \times 10^{28} \text{ cm}^2 \text{ s}^{-1}$

- t_{cool} : KN cross-section with $\rho = \{0.26, 0.6, 0.6, 0.1\} \text{ eV cm}^{-3} \text{ for CMB, IR,}$ opt, UV; 3 μ G B-field
- t_{ion} : $n_{\text{H}} = 0.5 \text{ cm}^{-3}$ (WIM) and $n_{\text{H}} = 0.5 \text{ cm}^{-3}$ (WNM) and 100 pc wide gas disk

In a diffusion model with $E^{-\Gamma}$ sources in disk:

- $\phi(E) \propto E^{-\Gamma-\delta}$ if diffusion dominated
- $\phi(E) \propto E^{-\Gamma (\delta + 1)/2}$ if cooling dominated

GeV vs MeV

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

(diffusion-loss length) \gg (average source separation)

 $\Rightarrow {\rm little \ fluctuation} \\ \Rightarrow {\rm smooth \ approximation \ is \ good}$

 $(diffusion-loss length) \ll (average source separation)$

 \Rightarrow sizeable fluctuations \Rightarrow smooth approximation is bad

Cosmic ray flux is a stochastic quantity

Results: protons & electrons

Phan, Schulze, Mertsch, Recchia, Gabici (2021)

- Voyager 1 data inside uncertainty band
- $\rightarrow\,$ Source discreteness effects important

Result # 1

 $\rightarrow\,$ No need for unmotivated break in source spectrum!

The ionisation puzzle

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

The ionisation puzzle

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

Result # 2

• Local ISM: improvement, but still too low

The ionisation puzzle

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

Result # 2

- Local ISM: improvement, but still too low
- Spiral Arm: systematic shift up