Recent Results on Cosmic Ray Spectrum and Anisotropy from the GRAPES-3 Experiment

Pravata Mohanty

ta Institute of Fundamental Research, India

(On-béhalf of the GRAPES-3 Collaboration) SuGAR 2024, October 14-17, 2024, University of Wisconsin, Madison

The GRAPES-3 Collaboration

GRAPES-3 is located in Ooty, India 11.4° N lat., 76.7°E lon., 2200 m alt.

- 1. Tata Institute of Fundamental Research, Mumbai, India
- 2. Osaka City University, Osaka, Japan
- 3. Aichi Institute of Technology, Aichi, Japan
- 4. J.C. Bose Institute, Kolkata, India
- 5. Indian Institute of Science & Edu. Res. Pune, India
- 6. Chubu University, Kasugai, Aichi, Japan
- 7. Hiroshima City University, Hiroshima, Japan
- 8. Aligarh Muslim University, Aligarh, India
- 9. Indian Institute of Technology, Kanpur, India
- 10. North Bengal University, Siliguri, India
- 11. Vishwakarma Inst. of Information Tech., Pune, India
- 12. Kochi University, Kochi, Japan
- 13. Utkal University, Bhubaneswar, India
- 14. Dibrugarh University, Dibrugarh, India
- 15. Nagoya University, Nagoya, Japan
- 16. Tezpur Central University, Tezpur, India
- 17. Indian Institute of Technology, Jodhpur, India
- 18. Indian Institute of Technology, Indore, India
- 19. Institute for Cosmic Ray Research, Tokyo U., Japan
- 20. Amity University, Noida, India
- 21. Institute of physics, Bhubaneswar, India

The GRAPES-3 Experiment

- 400 plastic scintillator detectors (1 m² area) with 8 m inter-separation spread over 25,000m²
- 560 m² muon telescope consisting 3712 proportional counters (6m x 0.1m x 0.1m).

Single PMT conventional type (photoelectron yield: 4-5)

Each scintillator detector is designed to measure charged particle component and relative arrival times

25% of scintillators instrumented with 2 PMTs for extended density measurements (100 - 10,000 m⁻²)

GRAPES-3 Shower Data

- A shower trigger is generated when minimum 10 detectors observe above 0.5 equivalent minimum ionising particle.
- The array records 4 million shower events per day in the TeV-PeV energy range with median energy of 15 TeV
- Array has operated > 99% uptime. It has collected 15 billion showers since its operation in 2000

Shower Reconstruction

- Shower parameters such as core location (X_c, Y_c), size (N_e) and age (s) are obtained by fitting the observed lateral densities with NKG function
- Direction of the shower (zenith and azimuth) are obtained by fitting a plane front to the observed relative arrival times

$$\rho_i = \frac{N_e}{2\pi r_m^2} \frac{\Gamma(4.5-s)}{\Gamma(s)\Gamma(4.5-2s)} \left(\frac{r_i}{r_m}\right) \left(1+\frac{r_i}{r_m}\right)^{s-4.5}$$

Performances of the scintillator array

Performances of the scintillator array (angular resolution)

GRAPES-3 muon telescope (560 m²)

- Muon detector consists of 16 modules of 35 m² area each.
- Threshold of muons = 1 GeV
- Muons recorded associated with each EAS trigger
- Self triggered muons are recorded in 169 directional bins with 4° resolution with a statistics of 4 billion muons per day

Proportional counter filled with P10 gas

Proportional counter fabrication at GRAPES-3. ~4000 successfully made.

Rust removal

Hermetic seal fixing

Evacuation

P10 gas filling

Long term test

PRC spectrum

Muon telescope upgrade (560 m² to 1130 m²)

An operational module

Geant4 response of a muon module

.....

550 gm cm⁻² of concrete absorber. Threshold for muons = 1 GeV x sec(theta).

Tracking of muons in a shower event

Composition Analysis: Data selection and quality cuts

- Showers were selected within 50m from the centre of the array to exclude those landing outside the array while getting mis-reconstructed to be inside the array less than 1%.
- Showers were selected beyond 60 from the centre of the muon modules to restrict the hadron punch-through less than 2%.

Showers selected for this analysis

Fitting MMD and Extraction of Composition

- Observed MMD cannot be described either H or Fe requiring intermediate masses.
- For a given N_e bin, response matrix is generated using MC simulation and Gold's unfolding algorithm is used for relative composition for the five mass groups.

Relative composition of proton primary

Relative composition for proton primary was obtained for each shower size (N_e) separately.

Systematics uncertainties from different sources. Limited MC statistics and differential spectral profiles are the dominant sources of uncertainties.

Shower size distribution for proton and unfolding

GRAPES-3 Proton Energy Spectrum from 50 TeV - 1.3 PeV

The observed spectral hardening by GRAPES-3 above165 TeV challenges the longheld belief that the spectrum is described by a simple power-law below the Knee. Scintillator response to γ : 4%

It is still 20% of the total detected particles. Underestimation of size if we ignore this

Simulation shows 2 cm thick scintillator detects 10% more particles than 5 cm. An independent work by Jhansi Bhavani with experimental data shows similar result

Muon telescope

Poster by Saswat Mishra

Umananda Goswam

F. Varsi et al., PRL 132, 051002 (2024)

PHYSICAL REVIEW LETTERS 132, 051002 (2024)

Evidence of a Hardening in the Cosmic Ray Proton Spectrum at around 166 TeV Observed by the GRAPES-3 Experiment

F. Varsi,¹ S. Ahmad,² M. Chakraborty,³ A. Chandra,² S. R. Dugad,³ U. D. Goswami,⁴ S. K. Gupta,³ B. Hariharan,³ Y. Hayashi,⁵ P. Jagadeesan,³ A. Jain,³ P. Jain,¹ S. Kawakami,⁵ H. Kojima,⁶ P. Lipari,⁷ S. Mahapatra,⁸ P. K. Mohantyo,^{3,*} R. Moharana,⁹ Y. Muraki,¹⁰ P. K. Nayak,³ T. Nonaka,¹¹ A. Oshima,⁶ B. P. Pant,⁹ D. Pattanaik,^{3,8} S. Paul,³ G. S. Pradhan,¹² M. Rameez,³ K. Ramesh,³ L. V. Reddy,³ S. Saha,¹ R. Sahoo,¹² R. Scaria,¹² S. Shibata,⁶ and M. Zuberi³

(GRAPES-3 Collaboration)

¹Indian Institute of Technology Kanpur, Kanpur 208016, India
²Aligarh Muslim University, Aligarh 202002, India
³Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
⁴Dibrugarh University, Dibrugarh 786004, India
⁵Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
⁶College of Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan
⁷INFN, Sezione Roma "Sapienza", Piazzale Aldo Moro 2, 00185 Roma, Italy
⁸Utkal University, Bhubaneswar 751004, India
⁹Indian Institute of Technology Jodhpur, Jodhpur 342037, India
¹⁰Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan
¹¹Institute of Cosmic Ray Research, Tokyo University, Kashiwa, Chiba 277-8582, Japan

(Received 18 April 2023; revised 16 October 2023; accepted 4 January 2024; published 31 January 2024)

We present the measurement of the cosmic ray proton spectrum from 50 TeV to 1.3 PeV using 7.81×10^{6} extensive air shower events recorded by the ground-based GRAPES-3 experiment between 1 January 2014 and 26 October 2015 with a live time of 460 day. Our measurements provide an overlap with direct observations by satellite and balloon-based experiments. The electromagnetic and muon components in the shower were measured by a dense array of plastic scintillator detectors and a tracking muon telescope, respectively. The relative composition of the proton primary from the air shower data containing all primary particles was extracted using the multiplicity distribution of muons which is a sensitive observable for mass composition. The observed proton spectrum suggests a spectral hardening at ~166 TeV and disfavors a single power law description of the spectrum up to the Knee energy (~3 PeV).

DOI: 10.1103/PhysRevLett.132.051002

statistical errors are very large APJ 2022

DAMPE proton + helium data suggests a hardening above 150 TeV PRD 2024

HAWC data (ICRC2023) shows a similar profile although systematic uncertainties are large.

Cosmic-ray proton spectrum

Three component model of cosmic ray spectra from 10 GeV to 100 PeV

A&A 458, 1-5 (2006), V. I. Zatsepin and N. V. Sokolskaya

- The model assumed one class of sources (SNRs) terminates its effective acceleration at ~50 TeV
- The second source class, presumably supernovae within the local supper bubble accelerates cosmic rays up to rigidity of 4 PeV, producing the Knee.
- Assumed contribution of nova stars below ~300 GeV.

Gaisser-Stanev-Tilav (GST) model of cosmic ray composition

T.K. Gaisser, T. Stanev, S. Tilav, Front. Phys. 2013, 8(6):748-758

Future space-based experiments can reach up to Knee

Slíde from Pier Símone's presentation at COSPAR 2024, Busan

HERD

Cosmic ray anisotropy results from GRAPES-3

Analysis was performed using 3.7 billion cosmic ray events spanning 4 years at median energy of 16 TeV. Time scrambling method is used for background map generation.

Relative intensity (x10

Comparison with other experiments

	Region A ($\times 10^{-4}$)	Region B ($\times 10^{-4}$)
ARGO-YBJ	10.0	5.0
HAWC	$(8.5 \pm 0.6 \pm 0.8)$	$(5.2 \pm 0.6 \pm 0.7)$
GRAPES-3	$(8.9 \pm 2.1 \pm 0.3)$	$(5.6 \pm 1.8 \pm 0.1)$

30

0.001

Plan to perform joint analysis of GRAPES-3 and IceCube data

Results with Muon Cut

- Showers producing at least 2 tracks in the muon detector
- No of events: 1.9×10^9
- Change in strength of Region A : (6.5 \pm 1.3) \times 10 $^{-4}$ to (5.7 \pm 1.8) \times 10 $^{-4}$
- Change in strength of Region B : (4.9 \pm 1.4) \times 10^{-4} to (6.5 \pm 2.0) \times 10^{-4}
- Change is within 1σ
- Primary contribution to these structures is hadronic.

Physical origin of small-scale anisotropy?

UNSOLVED MYSTERY!!!

- Models suggest that the Supernova explosion giving rise to Geminga might give rise to the structures.
 Other models suggest this is unlikely (M. Salvati and B. Sacco: Cosmic rays from the Geminga supernova? A and A 485 (2008) 527)
- Nearby local sources of turbulence, Eg: The heliotail. (ApJ. 762 (2013) 44)
- Gamma ray source contribution Eg: Crab (Results by ARGO-YBJ, 2013, PRD, 88, 082001)

Summary and outlook

- We have measured cosmic ray proton spectrum below the Knee, providing a overlap with direct measurements.
- We have observed a spectral hardening in the proton spectrum above 165 TeV.
- We have observed two small-scale anisotropic structures from a near equatorial location.
- We are working to extract spectrum for other chemical groups below and above the knee
- We are working to extract large-scale anisotropy
- Upgrade of the muon telescope is in progress. Together with expansion of the scintillator array is expected to provide enhanced sensitivity for cosmic ray composition and gamma ray studies

Thank you for your attention

Backup slides

Monte Carlo (MC) simulations

- Detailed MC simulation study is done, which broadly involves,
 - 1. EAS development simulation in Earth's atmosphere using the CORSIKA package.
 - 2. Simulation of the EAS particles in the SDs to estimate their corresponding ρ and t.
 - 3. Detailed simulation of the EAS particles response in the G3MT using the GEANT4 package.

- ▶ EAS development simulation at GRAPES-3 site,
 - CORSIKA v7.6900 package.
 - QGSJET-II-04/FLUKA as high/low-energy hadronic interaction model.
 - H, He, N, Al and Fe.
 - E: 1 TeV to 10 PeV, with $E^{-2.5}$ spectral slope.
 - θ : 0° to 45°.
 - 6.1×10^7 EASs for each element.

- Simulation of the EAS particles in the SDs,
 - Analyzed with an in-house developed software framework.
 - Two datasets: dataset-1 with random core distributed within 150 m from array center for entire energy range, dataset-2 with 60 m from the center array for E > 100 TeV.
 - Each EAS used ten times with a random core location to improve statistics.
 - $t \leftarrow CORSIKA$ output.
 - $\rho \leftarrow \text{GEANT-4}$ simulation of plastic SDs.
 - Generate EAS trigger and EAS parameters.

> Datasets with $E^{-2.7}$ spectral slope and proposed by GST and H4a composition models are derived.

Shower size (Ne)

Gaussian and unfolding Method

Gaussian and unfolding Method for GST Composition model

Systematic uncertainties

Due to unfolding procedure

Due to initial

Systematic uncertainties

TABLE S3. Systematic uncertainties (%) in estimating the relative composition of proton primary from various sources. Here systematic uncertainty δ_{UA} due to unfolding algorithm, δ_P due to initial guess/prior, b_1 due to bias from unfolding, δ_{SP} due to differential spectral profiles, δ_S due to smoothing algorithm, and σ_1 due to limited Monte Carlo statistics. Please see the text in section S3 D for the description of each systematic uncertainty. The last column represents the total systematic uncertainty, which was calculated by adding the contribution of systematic uncertainty from different sources in quadrature.

N_e	$\delta_{UA}(\%)$	$\delta_P(\%)$	$b_1(\%)$	$\delta_{SP}(\%)$	$\delta_S(\%)$	$\sigma_1(\%)$	$\delta_{total}(\%)$
1.26×10^4	+0.04	+0.00/-0.06	-0.07	+3.69/-5.80	-1.37	± 3.18	+4.87/-6.76
2.00×10^4	+0.01	+0.07/-0.00	-0.01	+3.04/-6.68	-2.15	± 3.67	$+4.77^{\prime}/-7.92$
3.16×10^4	+0.04	+0.00/-0.84	-0.15	+2.41/-4.03	+0.34	± 3.87	+4.57/-5.71
$5.01 imes 10^4$	+0.04	+0.00/-1.04	+0.01	+1.70/-2.87	-0.04	± 3.41	+3.80/-4.90
7.94×10^4	+0.24	+0.00/-1.03	+0.08	+0.60/-1.97	-0.82	± 5.03	+5.07/-5.87
1.26×10^5	+0.44	+0.00/-0.83	+0.00	+0.00/-1.89	-0.70	± 1.81	+1.86/-3.61
$2.00 imes 10^5$	+0.77	+0.00/-0.48	-0.02	+0.00/-1.76	+0.33	± 3.34	+3.44/-4.20
$3.16 imes 10^5$	+0.84	+0.00/-0.51	-0.06	+0.00/-3.08	+0.69	± 3.86	+4.01/-5.12
$5.01 imes 10^5$	+0.43	+0.99/-0.30	+0.18	+0.00/-4.88	-2.01	± 5.14	+5.25/-7.43
7.94×10^{5}	+1.80	+0.07/-0.37	+0.15	+0.00/-7.59	-4.07	± 6.03	+6.29/-10.52

TABLE S2. Relative composition of proton primary estimated using Gold's unfolding procedure for the GRAPES-3 data. The statistical and systematic uncertainties are mentioned.

N_e	$a_1 \pm \delta_1^{stat} + \delta_1^{sys} - \delta_1^{sys}$
1.26×10^4	$0.650 \pm 0.002 + 0.032 - 0.044$
2.00×10^4	$0.558 \pm 0.002 + 0.027 - 0.044$
3.16×10^4	$0.465 \pm 0.002 + 0.021 - 0.027$
5.01×10^4	$0.436 \pm 0.003 + 0.017 - 0.021$
7.94×10^{4}	$0.432 \pm 0.004 + 0.022 - 0.025$
1.26×10^{5}	$0.435 \pm 0.005 + 0.008 - 0.016$
2.00×10^5	$0.440 \pm 0.007 + 0.015 - 0.018$
3.16×10^{5}	$0.446 \pm 0.008 + 0.018 - 0.023$
5.01×10^{5}	$0.462 \pm 0.011 + 0.024 - 0.034$
$7.94 imes 10^5$	$0.470 \pm 0.016 + 0.030 - 0.049$

TABLE S4. The number of observed events by GRAPES-3 and corresponding proton events in different shower size bins. The statistical error in the estimation of proton events is listed in the last column.

N_e	$n(N_e^{obs})$	$n(N_{e1})$	$\delta N_{e1}(\%)$
1.26×10^4	3890720	2530350	0.34
$2.00 imes 10^4$	1959300	1092590	0.39
$3.16 imes 10^4$	970833	451097	0.51
$5.01 imes 10^4$	486000	211886	0.76
$7.94 imes 10^4$	246606	106595	0.91
$1.26 imes 10^5$	126709	55074	1.14
$2.00 imes 10^5$	65155	28664	1.59
$3.16 imes 10^5$	33704	15043	1.81
$5.01 imes 10^5$	17534	8097	2.49
$7.94 imes 10^5$	8719	4100	3.63

TABLE S5. Summary of the unfolded number of events in the energy distribution of proton primaries for GRAPES-3 data estimated using Gold's unfolding algorithm. The values of differential flux ($\Phi(E)$) and the corresponding statistical and total systematic uncertainties are listed in the third column.

1 0__01 proĎability

10⁻²

10⁻³

10⁻⁴

10⁻⁵

Energy [GeV]	Number of events	$\Phi \pm \delta \Phi_{stat.} + \delta \Phi_{sys.} - \delta \Phi_{sys.}$ $[m^{-2} sr^{-1} s^{-1} GeV^{-1}]$
5.01×10^4	2797488	$(2.80\pm0.01+0.13-0.19)\times10^{-9}$
$7.94 imes 10^4$	1139870	$(6.67 \pm 0.03 + 0.36 - 0.53) \times 10^{-10}$
$1.26 imes 10^5$	450551	$(1.63 \pm 0.01 + 0.09 - 0.11) \times 10^{-10}$
$2.00 imes 10^5$	189363	$(4.30 \pm 0.05 + 0.32 - 0.41) \times 10^{-11}$
$3.16 imes 10^5$	89306	$(1.28 \pm 0.02 + 0.11 - 0.12) \times 10^{-11}$
$5.01 imes 10^5$	44715	$(4.04 \pm 0.08 + 0.27 - 0.36) \times 10^{-12}$
7.94×10^5	21194	$(1.21 \pm 0.03 + 0.08 - 0.11) \times 10^{-12}$
1.26×10^6	9928	$(3.57 \pm 0.13 + 0.39 - 0.46) \times 10^{-13}$

Power spectrum analysis

$$\delta \mathbf{I}(\alpha, \delta) = \Sigma_{\ell} \Sigma_m a_{\ell m} Y_{\ell m}(\alpha, \delta) \ C_{\ell} = \frac{\Sigma_m |a_{\ell m}|^2}{2\ell + 1}$$
, White noise $\sim 4\pi f_{sky}^2 / N_{tot}$

- -

-

